Book Search:  

 

 
Google full text of our books:

bookjacket

Lectures on Resolution of Singularities (AM-166)
János Kollár

Book Description | Reviews
Chapter 1 [in PDF format]

TABLE OF CONTENTS:

Introduction 1

Chapter 1. Resolution for Curves 5
1.1. Newton's method of rotating rulers 5
1.2. The Riemann surface of an algebraic function 9
1.3. The Albanese method using projections 12
1.4. Normalization using commutative algebra 20
1.5. Infinitely near singularities 26
1.6. Embedded resolution, I: Global methods 32
1.7. Birational transforms of plane curves 35
1.8. Embedded resolution, II: Local methods 44
1.9. Principalization of ideal sheaves 48
1.10. Embedded resolution, III: Maximal contact 51
1.11. Hensel's lemma and the Weierstrass preparation theorem 52
1.12. Extensions of K((t)) and algebroid curves 58
1.13. Blowing up 1-dimensional rings 61

Chapter 2. Resolution for Surfaces 67
2.1. Examples of resolutions 68
2.2. The minimal resolution 73
2.3. The Jungian method 80
2.4. Cyclic quotient singularities 83
2.5. The Albanese method using projections 89
2.6. Resolving double points, char 6= 2 97
2.7. Embedded resolution using Weierstrass’ theorem 101
2.8. Review of multiplicities 110

Chapter 3. Strong Resolution in Characteristic Zero 117
3.1. What is a good resolution algorithm? 119
3.2. Examples of resolutions 126
3.3. Statement of the main theorems 134
3.4. Plan of the proof 151
3.5. Birational transforms and marked ideals 159
3.6. The inductive setup of the proof 162
3.7. Birational transform of derivatives 167
3.8. Maximal contact and going down 170
3.9. Restriction of derivatives and going up 172
3.10. Uniqueness of maximal contact 178
3.11. Tuning of ideals 183
3.12. Order reduction for ideals 186
3.13. Order reduction for marked ideals 192

Bibliography 197
Index 203

Return to Book Description

File created: 4/17/2014

Questions and comments to: webmaster@press.princeton.edu
Princeton University Press

New Book E-mails
New In Print
PUP Blog
Videos/Audios
Sample Chapters
Subjects
Series
Catalogs
Textbooks
For Reviewers
Class Use
Rights
Permissions
Ordering
Recent Awards
Princeton Shorts
Freshman Reading
Princeton APPS
PUP Europe
About Us
Contact Us
Links
F.A.Q.
MATH SITE
PUP Home


Bookmark and Share