Book Search:  

 

 
Google full text of our books:

bookjacket

Principles of Laser Spectroscopy and Quantum Optics
Paul R. Berman & Vladimir S. Malinovsky

Book Description | Reviews
Chapter 1 [in PDF format]

TABLE OF CONTENTS:

Preface xv
Chapter 1: Preliminaries 1
Chapter 2: Two-Level Quantum Systems 17
Chapter 3: Density Matrix for a Single Atom 56
Chapter 4: Applications of the Density Matrix Formalism 83
Chapter 5: Density Matrix Equations: Atomic Center-of-Mass Motion, Elementary Atom Optics, and Laser Cooling 99
Chapter 6: Maxwell-Bloch Equations 120
Chapter 7: Two-Level Atoms in Two or More Fields: Introduction to Saturation Spectroscopy 136
Chapter 8: Three-Level Atoms: Applications to Nonlinear Spectroscopy-Open Quantum Systems 159
Chapter 9: Three-Level Atoms: Dark States, Adiabatic Following, and Slow Light 184
Chapter 10: Coherent Transients 206
Chapter 11: Atom Optics and Atom Interferometry 242
Chapter 12: The Quantized, Free Radiation Field 280
Chapter 13: Coherence Properties of the Electric Field 312
Chapter 14: Photon Counting and Interferometry 339
Chapter 15: Atom-Quantized Field Interactions 358
Chapter 17: Optical Pumping and Optical Lattices 402
Chapter 18: Sub-Doppler Laser Cooling 422
Chapter 19: Operator Approach to Atom-Field Interactions: Source-Field Equation 453
Chapter 20: Light Scattering 474
Chapter 21: Entanglement and Spin Squeezing 492
References 506
Bibliography 507
Index 509

Return to Book Description

File created: 7/11/2014

Questions and comments to: webmaster@press.princeton.edu
Princeton University Press

New Book E-mails
New In Print
PUP Blog
Videos/Audios
Princeton APPS
Sample Chapters
Subjects
Series
Catalogs
Princeton Legacy Library
Textbooks
Media/Reviewers
Class Use
Rights/Permissions
Ordering
Recent Awards
Princeton Shorts
Freshman Reading
PUP Europe
About Us
Contact Us
Links
F.A.Q.
PUP Home


Bookmark and Share