Book Search:  

 

 
Google full text of our books:

bookjacket

Spatiotemporal Data Analysis
Gidon Eshel

Book Description | Reviews
Chapter 1 [in PDF format] | Table of Contents [PDF only]

TABLE OF CONTENTS:

Preface xi
Acknowledgments xv>

Part 1. Foundations
Chapter One: Introduction and Motivation 1
Chapter Two: Notation and Basic Operations 3
Chapter Three: Matrix Properties, Fundamental Spaces, Orthogonality 12
3.1 Vector Spaces 12
3.2 Matrix Rank 18
3.3 Fundamental Spaces Associated with A d R M # N 23
3.4 Gram-Schmidt Orthogonalization 41
3.5 Summary 45

Chapter Four: Introduction to Eigenanalysis 47
4.1 Preface 47
4.2 Eigenanalysis Introduced 48
4.3 Eigenanalysis as Spectral Representation 57
4.4 Summary 73

Chapter Five: The Algebraic Operation of SVD 75
5.1 SVD Introduced 75
5.2 Some Examples 80
5.3 SVD Applications 86
5.4 Summary 90
Part 2. Methods of Data Analysis
Chapter Six: The Gray World of Practical Data Analysis: An Introduction to Part 2 95
Chapter Seven Statistics in Deterministic Sciences: An Introduction 96
7.1 Probability Distributions 99
7.2 Degrees of Freedom 104

Chapter Eight: Autocorrelation 109
8.1 Theoretical Autocovariance and Autocorrelation Functions of AR(1) and AR(2) 118
8.2 Acf-derived Timescale 123
8.3 Summary of Chapters 7 and 8 125

Chapter Nine: Regression and Least Squares 126
9.1 Prologue 126
9.2 Setting Up the Problem 126
9.3 The Linear System Ax = b 130
9.4 Least Squares: The SVD View 144
9.5 Some Special Problems Giving Rise to Linear Systems 149
9.6 Statistical Issues in Regression Analysis 165
9.7 Multidimensional Regression and Linear Model Identification 185
9.8 Summary 195

Chapter Ten:. The Fundamental Theorem of Linear Algebra 197
10.1 Introduction 197
10.2 The Forward Problem 197
10.3 The Inverse Problem 198

Chapter Eleven:. Empirical Orthogonal Functions 200
11.1 Introduction 200
11.2 Data Matrix Structure Convention 201
11.3 Reshaping Multidimensional Data Sets for EOF Analysis 201
11.4 Forming Anomalies and Removing Time Mean 204
11.5 Missing Values, Take 1 205
11.6 Choosing and Interpreting the Covariability Matrix 208
11.7 Calculating the EOFs 218
11.8 Missing Values, Take 2 225
11.9 Projection Time Series, the Principal Components 228
11.10 A Final Realistic and Slightly Elaborate Example: Southern New York State Land Surface Temperature 234
11.11 Extended EOF Analysis, EEOF 244
11.12 Summary 260

Chapter Twelve:. The SVD Analysis of Two Fields 261
12.1 A Synthetic Example 265
12.2 A Second Synthetic Example 268
12.3 A Real Data Example 271
12.4 EOFs as a Prefilter to SVD 273
12.5 Summary 274

Chapter Thirteen:. Suggested Homework 276
13.1 Homework 1, Corresponding to Chapter 3 276
13.2 Homework 2, Corresponding to Chapter 3 283
13.3 Homework 3, Corresponding to Chapter 3 290
13.4 Homework 4, Corresponding to Chapter 4 292
13.5 Homework 5, Corresponding to Chapter 5 296
13.6 Homework 6, Corresponding to Chapter 8 300
13.7 A Suggested Midterm Exam 303
13.8 A Suggested Final Exam 311
Index 313

Return to Book Description

File created: 4/17/2014

Questions and comments to: webmaster@press.princeton.edu
Princeton University Press

New Book E-mails
New In Print
PUP Blog
Videos/Audios
Sample Chapters
Subjects
Series
Catalogs
Textbooks
For Reviewers
Class Use
Rights
Permissions
Ordering
Recent Awards
Princeton Shorts
Freshman Reading
Princeton APPS
PUP Europe
About Us
Contact Us
Links
F.A.Q.
MATH SITE
PUP Home


Bookmark and Share