

Contents

1. **Introduction**
2. **Berry Phase**
 2.1 General Formalism
 2.2 Gauge-Independent Computation of the Berry Phase
 2.3 Degeneracies and Level Crossing
 2.3.1 Two-Level System Using the Berry Curvature
 2.3.2 Two-Level System Using the Hamiltonian Approach
 2.4 Spin in a Magnetic Field
 2.5 Can the Berry Phase Be Measured?
 2.6 Problems
3. **Hall Conductance and Chern Numbers**
 3.1 Current Operators
 3.1.1 Current Operators from the Continuity Equation
 3.1.2 Current Operators from Peierls Substitution
 3.2 Linear Response to an Applied External Electric Field
 3.2.1 The Fluctuation Dissipation Theorem
 3.2.2 Finite-Temperature Green’s Function
 3.3 Current-Current Correlation Function and Electrical Conductivity
 3.4 Computing the Hall Conductance
 3.4.1 Diagonalizing the Hamiltonian and the Flat-Band Basis
 3.5 Alternative Form of the Hall Response
 3.6 Chern Number as an Obstruction to Stokes’ Theorem over the Whole BZ
 3.7 Problems
4. **Time-Reversal Symmetry**
 4.1 Time Reversal for Spinless Particles
 4.1.1 Time Reversal in Crystals for Spinless Particles
 4.1.2 Vanishing of Hall Conductance for T-Invariant Spinless Fermions
 4.2 Time Reversal for Spinful Particles
 4.3 Kramers’ Theorem
 4.4 Time-Reversal Symmetry in Crystals for Half-Integer Spin Particles
 4.5 Vanishing of Hall Conductance for T-Invariant Half-Integer Spin Particles
 4.6 Problems
5. **Magnetic Field on the Square Lattice**
 5.1 Hamiltonian and Lattice Translations
 5.2 Diagonalization of the Hamiltonian of a 2-D Lattice in a Magnetic Field
 5.2.1 Dependence on \(k\)
 5.2.2 Dirac Fermions in the Magnetic Field on the Lattice
 5.3 Hall Conductance
 5.3.1 Diophantine Equation and Streda Formula Method

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
5.4 Explicit Calculation of the Hall Conductance

5.5 Problems

6 Hall Conductance and Edge Modes: The Bulk-Edge Correspondence

6.1 Laughlin’s Gauge Argument

6.2 The Transfer Matrix Method

6.3 Edge Modes

6.4 Bulk Bands

6.5 Problems

7 Graphene

7.1 Hexagonal Lattices

7.2 Dirac Fermions

7.3 Symmetries of a Graphene Sheet

7.3.1 Time Reversal

7.3.2 Inversion Symmetry

7.3.3 Local Stability of Dirac Points with Inversion and Time Reversal

7.4 Global Stability of Dirac Points

7.4.1 C_3 Symmetry and the Position of the Dirac Nodes

7.4.2 Breaking of C_3 Symmetry

7.5 Edge Modes of the Graphene Layer

7.5.1 Chains with Even Number of Sites

7.5.2 Chains with Odd Number of Sites

7.5.3 Influence of Different Mass Terms on the Graphene Edge Modes

7.6 Problems

8 Simple Models for the Chern Insulator

8.1 Dirac Fermions and the Breaking of Time-Reversal Symmetry

8.1.1 When the Matrices σ Correspond to Real Spin

8.1.2 When the Matrices σ Correspond to Isospin

8.2 Explicit Berry Potential of a Two-Level System

8.2.1 Berry Phase of a Continuum Dirac Hamiltonian

8.2.2 The Berry Phase for a Generic Dirac Hamiltonian in Two Dimensions

8.2.3 Hall Conductivity of a Dirac Fermion in the Continuum

8.3 Skyrmion Number and the Lattice Chern Insulator

8.3.1 $M > 0$ Phase and $M < -4$ Phase

8.3.2 The $-2 < M < 0$ Phase

8.3.3 The $-4 < M < -2$ Phase

8.3.4 Back to the Trivial State for $M < -4$

8.4 Determinant Formula for the Hall Conductance of a Generic Dirac Hamiltonian

8.5 Behavior of the Vector Potential on the Lattice

8.6 The Problem of Choosing a Consistent Gauge in the Chern Insulator

8.7 Chern Insulator in a Magnetic Field

8.8 Edge Modes and the Dirac Equation

8.9 Haldane’s Graphene Model

8.9.1 Symmetry Properties of the Haldane Hamiltonian

8.9.2 Phase Diagram of the Haldane Hamiltonian

8.10 Problems
Contents

9 Time-Reversal-Invariant Topological Insulators 109
 9.1 The Kane and Mele Model: Continuum Version 109
 9.1.1 Adding Spin 110
 9.1.2 Spin ↑ and Spin ↓ 112
 9.1.3 Rashba Term 112
 9.2 The Kane and Mele Model: Lattice Version 113
 9.3 First Topological Insulator: Mercury Telluride Quantum Wells 117
 9.3.1 Inverted Quantum Wells 117
 9.4 Experimental Detection of the Quantum Spin Hall State 120
 9.5 Problems 121

10 \mathbb{Z}_2 Invariants 123
 10.1 \mathbb{Z}_2 Invariant as Zeros of the Pfaffian 123
 10.1.1 Pfaffian in the Even Subspace 124
 10.1.2 The Odd Subspace 125
 10.1.3 Example of an Odd Subspace: $d_a = 0$ Subspace 125
 10.1.4 Zeros of the Pfaffian 126
 10.1.5 Explicit Example for the Kane and Mele Model 127
 10.2 Theory of Charge Polarization in One Dimension 128
 10.3 Time-Reversal Polarization 130
 10.3.1 Non-Abelian Berry Potentials at $k, -k$ 133
 10.3.2 Proof of the Unitarity of the Sewing Matrix B 134
 10.3.3 A New Pfaffian \mathbb{Z}_2 Index 134
 10.4 \mathbb{Z}_2 Index for 3-D Topological Insulators 138
 10.5 \mathbb{Z}_2 Number as an Obstruction 141
 10.6 Equivalence between Topological Insulator Descriptions 144
 10.7 Problems 145

11 Crossings in Different Dimensions 147
 11.1 Inversion-Asymmetric Systems 148
 11.1.1 Two Dimensions 149
 11.1.2 Three Dimensions 149
 11.2 Inversion-Symmetric Systems 151
 11.2.1 $\eta_{a} = \eta_{b}$ 151
 11.2.2 $\eta_{a} = -\eta_{b}$ 152
 11.3 Mercury Telluride Hamiltonian 154
 11.4 Problems 156

12 Time-Reversal Topological Insulators with Inversion Symmetry 158
 12.1 Both Inversion and Time-Reversal Invariance 159
 12.2 Role of Spin-Orbit Coupling 162
 12.3 Problems 163

13 Quantum Hall Effect and Chern Insulators in Higher Dimensions 164
 13.1 Chern Insulator in Four Dimensions 164
 13.2 Proof That the Second Chern Number Is Topological 166
 13.3 Evaluation of the Second Chern Number: From a Green’s Function Expression to the Non-Abelian Berry Curvature 167
13.4 Physical Consequences of the Transport Law of the 4-D Chern Insulator 169
13.5 Simple Example of Time-Reversal-Invariant Topological Insulators with Time-Reversal and Inversion Symmetry Based on Lattice Dirac Models 172
13.6 Problems 175

14 Dimensional Reduction of 4-D Chern Insulators to 3-D Time-Reversal Insulators 177
14.1 Low-Energy Effective Action of (3 + 1)-D Insulators and the Magnetoelectric Polarization 177
14.2 Magnetoelectric Polarization for a 3-D Insulator with Time-Reversal Symmetry 181
14.3 Magnetoelectric Polarization for a 3-D Insulator with Inversion Symmetry 182
14.4 3-D Hamiltonians with Time-Reversal Symmetry and/or Inversion Symmetry as Dimensional Reductions of 4-D Time-Reversal-Invariant Chern Insulators 184
14.5 Problems 185

15 Experimental Consequences of the Z_2 Topological Invariant 186
15.1 Quantum Hall Effect on the Surface of a Topological Insulator 186
15.2 Physical Properties of Time-Reversal Z_2-Nontrivial Insulators 187
15.3 Half-Quantized Hall Conductance at the Surface of Topological Insulators with Ferromagnetic Hard Boundary 188
15.4 Experimental Setup for Indirect Measurement of the Half-Quantized Hall Conductance on the Surface of a Topological Insulator 189
15.5 Topological Magnetoelectric Effect 189
15.6 Problems 191

16 Topological Superconductors in One and Two Dimensions by Taylor L. Hughes 193
16.1 Introducing the Bogoliubov-de-Gennes (BdG) Formalism for s-Wave Superconductors 193
16.2 p-Wave Superconductors in One Dimension 196
16.2.1 1-D p-Wave Wire 196
16.2.2 Lattice p-Wave Wire and Majorana Fermions 199
16.3 2-D Chiral p-Wave Superconductor 201
16.3.1 Bound States on Vortices in 2-D Chiral p-wave Superconductors 206
16.4 Problems 211

17 Time-Reversal-Invariant Topological Superconductors by Taylor L. Hughes 214
17.1 Superconducting Pairing with Spin 214
17.2 Time-Reversal-Invariant Superconductors in Two Dimensions 215
17.2.1 Vortices in 2-D Time-Reversal-Invariant Superconductors 218
17.3 Time-Reversal-Invariant Superconductors in Three Dimensions 219
17.4 Finishing the Classification of Time-Reversal-Invariant Superconductors 222
17.5 Problems 224
Contents

18 Superconductivity and Magnetism in Proximity to Topological Insulator Surfaces by Taylor L. Hughes 226
 18.1 Generating 1-D Topological Insulators and Superconductors on the Edge of the Quantum-Spin Hall Effect 226
 18.2 Constructing Topological States from Interfaces on the Boundary of Topological Insulators 228
 18.3 Problems 234

APPENDIX: 3-D Topological Insulator in a Magnetic Field 237

References 241
Index 245