Contents

Preface xi

1 Introduction 1
1.1 Notation and conventions 5
1.2 Standard matrices 7

2 The algebra of quaternions 9
2.1 Basic definitions and properties 9
2.2 Real linear transformations and equations 11
2.3 The Sylvester equation 14
2.4 Automorphisms and involutions 17
2.5 Quadratic maps 21
2.6 Real and complex matrix representations 23
2.7 Exercises 24
2.8 Notes 26

3 Vector spaces and matrices: Basic theory 28
3.1 Finite dimensional quaternion vector spaces 28
3.2 Matrix algebra 30
3.3 Real matrix representation of quaternions 33
3.4 Complex matrix representation of quaternions 36
3.5 Numerical ranges with respect to conjugation 38
3.6 Matrix decompositions: nonstandard involutions 44
3.7 Numerical ranges with respect to nonstandard involutions 47
3.8 Proof of Theorem 3.7.5 52
3.9 The metric space of subspaces 56
3.10 Appendix: Multivariable real analysis 59
3.11 Exercises 61
3.12 Notes 63

4 Symmetric matrices and congruence 64
4.1 Canonical forms under congruence 64
4.2 Neutral and semidefinite subspaces 69
4.3 Proof of Theorem 4.2.6 72
4.4 Proof of Theorem 4.2.7 75
4.5 Representation of semidefinite subspaces 78
4.6 Exercises 80
4.7 Notes 82
CONTENTS

5 Invariant subspaces and Jordan form 83
5.1 Root subspaces 83
5.2 Root subspaces and matrix representations 85
5.3 Eigenvalues and eigenvectors 90
5.4 Some properties of Jordan blocks 94
5.5 Jordan form 97
5.6 Proof of Theorem 5.5.3 102
5.7 Jordan forms of matrix representations 109
5.8 Comparison with real and complex similarity 111
5.9 Determinants 113
5.10 Determinants based on real matrix representations 115
5.11 Linear matrix equations 116
5.12 Companion matrices and polynomial equations 119
5.13 Eigenvalues of hermitian matrices 123
5.14 Differential and difference equations 123
5.15 Appendix: Continuous roots of polynomials 126
5.16 Exercises 127
5.17 Notes 130

6 Invariant neutral and semidefinite subspaces 131
6.1 Structured matrices and invariant neutral subspaces 132
6.2 Invariant semidefinite subspaces respecting conjugation 136
6.3 Proof of Theorem 6.2.6 139
6.4 Unitary, dissipative, and expansive matrices 143
6.5 Invariant semidefinite subspaces: Nonstandard involution 146
6.6 Appendix: Convex sets 148
6.7 Exercises 149
6.8 Notes 151

7 Smith form and Kronecker canonical form 153
7.1 Matrix polynomials with quaternion coefficients 153
7.2 Uniqueness of the Smith form 158
7.3 Statement of the Kronecker form 161
7.4 Proof of Theorem 7.3.2: Existence 163
7.5 Proof of Theorem 7.3.2: Uniqueness 167
7.6 Comparison with real and complex strict equivalence 169
7.7 Exercises 170
7.8 Notes 171

8 Pencils of hermitian matrices 172
8.1 Canonical forms 172
8.2 Proof of Theorem 8.1.2 177
8.3 Positive semidefinite linear combinations 181
8.4 Proof of Theorem 8.3.3 183
8.5 Comparison with real and complex congruence 187
8.6 Expansive and plus-matrices: Singular H 188
8.7 Exercises 191
8.8 Notes 192
9 Skewhermitian and mixed pencils 194
 9.1 Canonical forms for skewhermitian matrix pencils 194
 9.2 Comparison with real and complex skewhermitian pencils 197
 9.3 Canonical forms for mixed pencils: Strict equivalence 199
 9.4 Canonical forms for mixed pencils: Congruence 202
 9.5 Proof of Theorem 9.4.1: Existence 205
 9.6 Proof of Theorem 9.4.1: Uniqueness 210
 9.7 Comparison with real and complex pencils: Strict equivalence 215
 9.8 Comparison with complex pencils: Congruence 219
 9.9 Proofs of Theorems 9.7.2 and 9.8.1 221
 9.10 Canonical forms for matrices under congruence 224
 9.11 Exercises 226
 9.12 Notes 227

10 Indefinite inner products: Conjugation 228
 10.1 H-hermitian and H-skewhermitian matrices 229
 10.2 Invariant semidefinite subspaces 232
 10.3 Invariant Lagrangian subspaces I 235
 10.4 Differential equations I 238
 10.5 Hamiltonian, skew-Hamiltonian matrices: Canonical forms 242
 10.6 Invariant Lagrangian subspaces II 246
 10.7 Extension of subspaces 248
 10.8 Proofs of Theorems 10.7.2 and 10.7.5 250
 10.9 Differential equations II 255
 10.10 Exercises 257
 10.11 Notes 259

11 Matrix pencils with symmetries: Nonstandard involution 261
 11.1 Canonical forms for ϕ-hermitian pencils 261
 11.2 Canonical forms for ϕ-skewhermitian pencils 263
 11.3 Proof of Theorem 11.2.2 266
 11.4 Numerical ranges and cones 274
 11.5 Exercises 277
 11.6 Notes 278

12 Mixed matrix pencils: Nonstandard involutions 279
 12.1 Canonical forms for ϕ-mixed pencils: Strict equivalence 279
 12.2 Proof of Theorem 12.1.2 281
 12.3 Canonical forms of ϕ-mixed pencils: Congruence 284
 12.4 Proof of Theorem 12.3.1 287
 12.5 Strict equivalence versus ϕ-congruence 290
 12.6 Canonical forms of matrices under ϕ-congruence 291
 12.7 Comparison with real and complex matrices 292
 12.8 Proof of Theorem 12.7.4 294
 12.9 Exercises 298
 12.10 Notes 299
CONTENTS

13 Indefinite inner products: Nonstandard involution | 300
 13.1 Canonical forms: Symmetric inner products | 301
 13.2 Canonical forms: Skewsymmetric inner products | 306
 13.3 Extension of invariant semidefinite subspaces | 309
 13.4 Proofs of Theorems 13.3.3 and 13.3.4 | 313
 13.5 Invariant Lagrangian subspaces | 316
 13.6 Boundedness of solutions of differential equations | 321
 13.7 Exercises | 325
 13.8 Notes | 327

14 Matrix equations | 328
 14.1 Polynomial equations | 328
 14.2 Bilateral quadratic equations | 331
 14.3 Algebraic Riccati equations | 332
 14.4 Exercises | 337
 14.5 Notes | 338

15 Appendix: Real and complex canonical forms | 339
 15.1 Jordan and Kronecker canonical forms | 339
 15.2 Real matrix pencils with symmetries | 341
 15.3 Complex matrix pencils with symmetries | 348

Bibliography | 353

Index | 361