Contents

Preface xv

I An Introduction to Quantitative Risk Management 1

1 Risk in Perspective 3
  1.1 Risk 3
    1.1.1 Risk and Randomness 3
    1.1.2 Financial Risk 5
    1.1.3 Measurement and Management 6
  1.2 A Brief History of Risk Management 8
    1.2.1 From Babylon to Wall Street 8
    1.2.2 The Road to Regulation 15
  1.3 The Regulatory Framework 20
    1.3.1 The Basel Framework 20
    1.3.2 The Solvency II Framework 25
    1.3.3 Criticism of Regulatory Frameworks 28
  1.4 Why Manage Financial Risk? 30
    1.4.1 A Societal View 30
    1.4.2 The Shareholder’s View 32
  1.5 Quantitative Risk Management 34
    1.5.1 The Q in QRM 34
    1.5.2 The Nature of the Challenge 35
    1.5.3 QRM Beyond Finance 38

2 Basic Concepts in Risk Management 42

2.1 Risk Management for a Financial Firm 42
  2.1.1 Assets, Liabilities and the Balance Sheet 42
  2.1.2 Risks Faced by a Financial Firm 44
  2.1.3 Capital 45
  2.2 Modelling Value and Value Change 47
    2.2.1 Mapping Risks 47
    2.2.2 Valuation Methods 54
    2.2.3 Loss Distributions 58
  2.3 Risk Measurement 61
    2.3.1 Approaches to Risk Measurement 61
    2.3.2 Value-at-Risk 64
    2.3.3 VaR in Risk Capital Calculations 67
Contents

6.2 Normal Mixture Distributions 183
  6.2.1 Normal Variance Mixtures 183
  6.2.2 Normal Mean–Variance Mixtures 187
  6.2.3 Generalized Hyperbolic Distributions 188
  6.2.4 Empirical Examples 191
6.3 Spherical and Elliptical Distributions 196
  6.3.1 Spherical Distributions 196
  6.3.2 Elliptical Distributions 200
  6.3.3 Properties of Elliptical Distributions 202
  6.3.4 Estimating Dispersion and Correlation 203
6.4 Dimension-Reduction Techniques 206
  6.4.1 Factor Models 206
  6.4.2 Statistical Estimation Strategies 208
  6.4.3 Estimating Macroeconomic Factor Models 210
  6.4.4 Estimating Fundamental Factor Models 213
  6.4.5 Principal Component Analysis 214

7 Copulas and Dependence 220
  7.1 Copulas 220
    7.1.1 Basic Properties 221
    7.1.2 Examples of Copulas 225
    7.1.3 Meta Distributions 229
    7.1.4 Simulation of Copulas and Meta Distributions 229
    7.1.5 Further Properties of Copulas 232
  7.2 Dependence Concepts and Measures 235
    7.2.1 Perfect Dependence 236
    7.2.2 Linear Correlation 238
    7.2.3 Rank Correlation 243
    7.2.4 Coefficients of Tail Dependence 247
  7.3 Normal Mixture Copulas 249
    7.3.1 Tail Dependence 249
    7.3.2 Rank Correlations 253
    7.3.3 Skewed Normal Mixture Copulas 256
    7.3.4 Grouped Normal Mixture Copulas 257
  7.4 Archimedean Copulas 259
    7.4.1 Bivariate Archimedean Copulas 259
    7.4.2 Multivariate Archimedean Copulas 261
  7.5 Fitting Copulas to Data 265
    7.5.1 Method-of-Moments Using Rank Correlation 266
    7.5.2 Forming a Pseudo-sample from the Copula 269
    7.5.3 Maximum Likelihood Estimation 270

8 Aggregate Risk 275
  8.1 Coherent and Convex Risk Measures 275
    8.1.1 Risk Measures and Acceptance Sets 276
    8.1.2 Dual Representation of Convex Measures of Risk 280
    8.1.3 Examples of Dual Representations 283
  8.2 Law-Invariant Coherent Risk Measures 286
    8.2.1 Distortion Risk Measures 286
    8.2.2 The Expectile Risk Measure 290
8.3 Risk Measures for Linear Portfolios 293
  8.3.1 Coherent Risk Measures as Stress Tests 293
  8.3.2 Elliptically Distributed Risk Factors 295
  8.3.3 Other Risk Factor Distributions 297
8.4 Risk Aggregation 299
  8.4.1 Aggregation Based on Loss Distributions 300
  8.4.2 Aggregation Based on Stressing Risk Factors 302
  8.4.3 Modular versus Fully Integrated Aggregation Approaches 303
  8.4.4 Risk Aggregation and Fréchet Problems 305
8.5 Capital Allocation 315
  8.5.1 The Allocation Problem 315
  8.5.2 The Euler Principle and Examples 316
  8.5.3 Economic Properties of the Euler Principle 320

III Applications 323
9 Market Risk 325
  9.1 Risk Factors and Mapping 325
    9.1.1 The Loss Operator 326
    9.1.2 Delta and Delta–Gamma Approximations 327
    9.1.3 Mapping Bond Portfolios 329
    9.1.4 Factor Models for Bond Portfolios 332
  9.2 Market Risk Measurement 338
    9.2.1 Conditional and Unconditional Loss Distributions 339
    9.2.2 Variance–Covariance Method 340
    9.2.3 Historical Simulation 342
    9.2.4 Dynamic Historical Simulation 343
    9.2.5 Monte Carlo 346
    9.2.6 Estimating Risk Measures 347
    9.2.7 Losses over Several Periods and Scaling 349
  9.3 Backtesting 351
    9.3.1 Violation-Based Tests for VaR 352
    9.3.2 Violation-Based Tests for Expected Shortfall 354
    9.3.3 Elicitability and Comparison of Risk Measure Estimates 355
    9.3.4 Empirical Comparison of Methods Using Backtesting Concepts 358
    9.3.5 Backtesting the Predictive Distribution 363
10 Credit Risk 366
  10.1 Credit-Risky Instruments 367
    10.1.1 Loans 367
    10.1.2 Bonds 368
    10.1.3 Derivative Contracts Subject to Counterparty Risk 369
    10.1.4 Credit Default Swaps and Related Credit Derivatives 370
    10.1.5 PD, LGD and EAD 372
  10.2 Measuring Credit Quality 374
    10.2.1 Credit Rating Migration 374
    10.2.2 Rating Transitions as a Markov Chain 376
  10.3 Structural Models of Default 380
    10.3.1 The Merton Model 380
    10.3.2 Pricing in Merton’s Model 381
    10.3.3 Structural Models in Practice: EDF and DD 386
    10.3.4 Credit-Migration Models Revisited 389
## Contents

10.4 Bond and CDS Pricing in Hazard Rate Models 391
   10.4.1 Hazard Rate Models 391
   10.4.2 Risk-Neutral Pricing Revisited 394
   10.4.3 Bond Pricing 399
   10.4.4 CDS Pricing 401
   10.4.5 \( P \) versus \( Q \): Empirical Results 404

10.5 Pricing with Stochastic Hazard Rates 406
   10.5.1 Doubly Stochastic Random Times 406
   10.5.2 Pricing Formulas 411
   10.5.3 Applications 413

10.6 Affine Models 416
   10.6.1 Basic Results 417
   10.6.2 The CIR Square-Root Diffusion 418
   10.6.3 Extensions 420

11 Portfolio Credit Risk Management 425
   11.1 Threshold Models 426
      11.1.1 Notation for One-Period Portfolio Models 426
      11.1.2 Threshold Models and Copulas 428
      11.1.3 Gaussian Threshold Models 430
      11.1.4 Models Based on Alternative Copulas 431
      11.1.5 Model Risk Issues 433
   11.2 Mixture Models 436
      11.2.1 Bernoulli Mixture Models 436
      11.2.2 One-Factor Bernoulli Mixture Models 437
      11.2.3 Recovery Risk in Mixture Models 440
      11.2.4 Threshold Models as Mixture Models 441
      11.2.5 Poisson Mixture Models and CreditRisk\(^+\) 444
   11.3 Asymptotics for Large Portfolios 449
      11.3.1 Exchangeable Models 450
      11.3.2 General Results 452
      11.3.3 The Basel IRB Formula 455
   11.4 Monte Carlo Methods 457
      11.4.1 Basics of Importance Sampling 457
      11.4.2 Application to Bernoulli Mixture Models 460
   11.5 Statistical Inference in Portfolio Credit Models 464
      11.5.1 Factor Modelling in Industry Threshold Models 465
      11.5.2 Estimation of Bernoulli Mixture Models 466
      11.5.3 Mixture Models as GLMMs 470
      11.5.4 A One-Factor Model with Rating Effect 472

12 Portfolio Credit Derivatives 476
   12.1 Credit Portfolio Products 476
      12.1.1 Collateralized Debt Obligations 477
      12.1.2 Credit Indices and Index Derivatives 481
      12.1.3 Basic Pricing Relationships for Index Swaps and CDOs 484
   12.2 Copula Models 487
      12.2.1 Definition and Properties 487
      12.2.2 Examples 489
   12.3 Pricing of Index Derivatives in Factor Copula Models 491
      12.3.1 Analytics 491
      12.3.2 Correlation Skews 494
      12.3.3 The Implied Copula Approach 497

For general queries, contact webmaster@press.princeton.edu
13 Operational Risk and Insurance Analytics 503
  13.1 Operational Risk in Perspective 503
     13.1.1 An Important Risk Class 503
     13.1.2 The Elementary Approaches 505
     13.1.3 Advanced Measurement Approaches 506
     13.1.4 Operational Loss Data 509
  13.2 Elements of Insurance Analytics 512
     13.2.1 The Case for Actuarial Methodology 512
     13.2.2 The Total Loss Amount 513
     13.2.3 Approximations and Panjer Recursion 518
     13.2.4 Poisson Mixtures 524
     13.2.5 Tails of Aggregate Loss Distributions 525
     13.2.6 The Homogeneous Poisson Process 526
     13.2.7 Processes Related to the Poisson Process 529

IV Special Topics 537

14 Multivariate Time Series 539
  14.1 Fundamentals of Multivariate Time Series 539
     14.1.1 Basic Definitions 539
     14.1.2 Analysis in the Time Domain 541
     14.1.3 Multivariate ARMA Processes 542
  14.2 Multivariate GARCH Processes 545
     14.2.1 General Structure of Models 545
     14.2.2 Models for Conditional Correlation 547
     14.2.3 Models for Conditional Covariance 550
     14.2.4 Fitting Multivariate GARCH Models 553
     14.2.5 Dimension Reduction in MGARCH 554
     14.2.6 MGARCH and Conditional Risk Measurement 557

15 Advanced Topics in Multivariate Modelling 559
  15.1 Normal Mixture and Elliptical Distributions 559
     15.1.1 Estimation of Generalized Hyperbolic Distributions 559
     15.1.2 Testing for Elliptical Symmetry 562
  15.2 Advanced Archimedean Copula Models 566
     15.2.1 Characterization of Archimedean Copulas 566
     15.2.2 Non-exchangeable Archimedean Copulas 568

16 Advanced Topics in Extreme Value Theory 572
  16.1 Tails of Specific Models 572
     16.1.1 Domain of Attraction of the Fréchet Distribution 572
     16.1.2 Domain of Attraction of the Gumbel Distribution 573
     16.1.3 Mixture Models 574
  16.2 Self-exciting Models for Extremes 577
     16.2.1 Self-exciting Processes 578
     16.2.2 A Self-exciting POT Model 580
  16.3 Multivariate Maxima 583
     16.3.1 Multivariate Extreme Value Copulas 583
     16.3.2 Copulas for Multivariate Minima 586
     16.3.3 Copula Domains of Attraction 586
     16.3.4 Modelling Multivariate Block Maxima 589
Contents

16.4 Multivariate Threshold Exceedances 591
16.4.1 Threshold Models Using EV Copulas 591
16.4.2 Fitting a Multivariate Tail Model 592
16.4.3 Threshold Copulas and Their Limits 594

17 Dynamic Portfolio Credit Risk Models and Counterparty Risk 599
17.1 Dynamic Portfolio Credit Risk Models 599
17.1.1 Why Dynamic Models of Portfolio Credit Risk? 599
17.1.2 Classes of Reduced-Form Models of Portfolio Credit Risk 600
17.2 Counterparty Credit Risk Management 603
17.2.1 Uncollateralized Value Adjustments for a CDS 604
17.2.2 Collateralized Value Adjustments for a CDS 609
17.3 Conditionally Independent Default Times 612
17.3.1 Definition and Mathematical Properties 612
17.3.2 Examples and Applications 618
17.3.3 Credit Value Adjustments 622
17.4 Credit Risk Models with Incomplete Information 625
17.4.1 Credit Risk and Incomplete Information 625
17.4.2 Pure Default Information 628
17.4.3 Additional Information 633
17.4.4 Collateralized Credit Value Adjustments and Contagion Effects 637

Appendix 641
A.1 Miscellaneous Definitions and Results 641
A.1.1 Type of Distribution 641
A.1.2 Generalized Inverses and Quantiles 641
A.1.3 Distributional Transform 643
A.1.4 Karamata’s Theorem 644
A.1.5 Supporting and Separating Hyperplane Theorems 644
A.2 Probability Distributions 644
A.2.1 Beta 645
A.2.2 Exponential 645
A.2.3 $F$ 645
A.2.4 Gamma 645
A.2.5 Generalized Inverse Gaussian 646
A.2.6 Inverse Gamma 646
A.2.7 Negative Binomial 646
A.2.8 Pareto 647
A.2.9 Stable 647
A.3 Likelihood Inference 647
A.3.1 Maximum Likelihood Estimators 648
A.3.2 Asymptotic Results: Scalar Parameter 648
A.3.3 Asymptotic Results: Vector of Parameters 649
A.3.4 Wald Test and Confidence Intervals 649
A.3.5 Likelihood Ratio Test and Confidence Intervals 650
A.3.6 Akaike Information Criterion 650

References 652

Index 687