Contents

Preface ix

1. **Introduction** 1
 1.1. Linear PDE 2
 1.2. Solutions; Initial and Boundary Conditions 3
 1.3. Nonlinear PDE 4
 1.4. Beginning Examples with Explicit Wave-like Solutions 6
 Problems 8

2. **Beginnings** 11
 2.1. Four Fundamental Issues in PDE Theory 11
 2.2. Classification of Second-Order PDE 12
 2.3. Initial Value Problems and the Cauchy-Kovalevskaya Theorem 17
 2.4. PDE from Balance Laws 21
 Problems 26

3. **First-Order PDE** 29
 3.1. The Method of Characteristics for Initial Value Problems 29
 3.2. The Method of Characteristics for Cauchy Problems in Two Variables 32
 3.3. The Method of Characteristics in \mathbb{R}^n 35
 3.4. Scalar Conservation Laws and the Formation of Shocks 38
 Problems 40

4. **The Wave Equation** 43
 4.1. The Wave Equation in Elasticity 43
 4.2. D'Alembert's Solution 48
 4.3. The Energy $E(t)$ and Uniqueness of Solutions 56
 4.4. Duhamel's Principle for the Inhomogeneous Wave Equation 57
 4.5. The Wave Equation on \mathbb{R}^2 and \mathbb{R}^3 59
 Problems 61

5. **The Heat Equation** 65
 5.1. The Fundamental Solution 66
 5.2. The Cauchy Problem for the Heat Equation 68
 5.3. The Energy Method 73

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
5.4. The Maximum Principle 75
5.5. Duhamel's Principle for the Inhomogeneous Heat Equation 77
Problems 78

6. Separation of Variables and Fourier Series 81
6.1. Fourier Series 81
6.2. Separation of Variables for the Heat Equation 82
6.3. Separation of Variables for the Wave Equation 91
6.4. Separation of Variables for a Nonlinear Heat Equation 93
6.5. The Beam Equation 94
Problems 96

7. Eigenfunctions and Convergence of Fourier Series 99
7.1. Eigenfunctions for ODE 99
7.2. Convergence and Completeness 102
7.3. Pointwise Convergence of Fourier Series 105
7.4. Uniform Convergence of Fourier Series 108
7.5. Convergence in L^2 110
7.6. Fourier Transform 114
Problems 117

8. Laplace's Equation and Poisson's Equation 119
8.1. The Fundamental Solution 119
8.2. Solving Poisson's Equation in \mathbb{R}^n 120
8.3. Properties of Harmonic Functions 122
8.4. Separation of Variables for Laplace's Equation 125
Problems 130

9. Green's Functions and Distributions 133
9.1. Boundary Value Problems 133
9.2. Test Functions and Distributions 136
9.3. Green's Functions 144
Problems 149

10. Function Spaces 153
10.1. Basic Inequalities and Definitions 153
10.2. Multi-Index Notation 157
10.3. Sobolev Spaces $W^{k,p}(U)$ 158
Problems 159

11. Elliptic Theory with Sobolev Spaces 161
11.1. Poisson's Equation 161
11.2. Linear Second-Order Elliptic Equations 167
Problems 173

For general queries, contact webmaster@press.princeton.edu
12. Traveling Wave Solutions of PDE 175
 12.1. Burgers’ Equation 175
 12.2. The Korteweg-deVries Equation 176
 12.3. Fisher’s Equation 179
 12.4. The Bistable Equation 181
 Problems 186

13. Scalar Conservation Laws 189
 13.1. The Inviscid Burgers Equation 189
 13.2. Scalar Conservation Laws 196
 13.3. The Lax Entropy Condition Revisited 201
 13.4. Undercompressive Shocks 204
 13.5. The (Viscous) Burgers Equation 206
 13.6. Multidimensional Conservation Laws 208
 Problems 211

14. Systems of First-Order Hyperbolic PDE 215
 14.1. Linear Systems of First-Order PDE 215
 14.2. Systems of Hyperbolic Conservation Laws 219
 14.3. The Dam-Break Problem Using Shallow Water Equations 239
 14.4. Discussion 241
 Problems 242

15. The Equations of Fluid Mechanics 245
 15.1. The Navier-Stokes and Stokes Equations 245
 15.2. The Euler Equations 247
 Problems 250

Appendix A. Multivariable Calculus 253
Appendix B. Analysis 259
Appendix C. Systems of Ordinary Differential Equations 263

References 265
Index 269