Contents

List of Illustrations xix
List of Tables xxv
Acknowledgements xxvii

Chapter 1 ECOLOGICAL MECHANICS
An Introduction 1
Mechanics and Ecology Combined: Coral Reefs 1
Response Functions 5
Transport Phenomena 6
What’s in a Name? 7
What’s Left Out 8
A Road Map 9
Online Supplements 9
A Note on Notation 9

Part I Basic Concepts

Chapter 2 BASIC PHYSICS AND MATH 13
Location 13
Dimensions and Units of Measure 13
Converting Units 15
Trigonometry 15
Translation 16
Translational Velocity 17
Translational Acceleration 18
Rotation 19
Force and Translational Acceleration 20
Moment and Rotational Acceleration 21
Momentum 23
Pressure 24
Buoyancy 25
Energy 26

For general queries, contact webmaster@press.princeton.edu
Conservation of Energy 30
Friction 31
Power 31
Summary 32

Online Supplements
2.1 Centripetal Acceleration
2.2 The Rotational Moment of Inertia for a Cylinder
2.3 Calculating Distance Using Calculus
2.4 Resting Mass

Chapter 3 RESPONSE FUNCTIONS 33
Concepts and Terminology 33
Monotonic Functions 34
Peaks and Valleys: Unimodal Response Functions 39
Complications 43
Jensen’s Inequality: The Fallacy of the Average 45
Linear versus Nonlinear 46
The Effects of Nonlinearity 47
Concepts and Conclusions 50

Online Supplements
3.1 Scope for Growth in Anemones
3.2 Modeling Reaction Norms
3.3 The Mean of a Linear Function Equals the Function of the Mean

Part II The Mechanics of Transport

Chapter 4 DIFFUSION 55
Random Motion and its Consequences 55
Rules of a Random Walk 55
Average Position 56
Dispersion: The Variance of Position 57
The Diffusion Coefficient 59
What Drives Random Walks? 61
Fick’s Equation 67
6.2 Reynolds Stress
6.3 Deriving the Law of the Wall for Smooth Plates

Chapter 7 BOUNDARY LAYERS II
Dynamic Layers
Boundary-Layer Thickness Defined
Thickness of Dynamic Laminar Boundary Layers
Shear Stress in Dynamic Laminar Boundary Layers
Mass Transport
The Dynamic Laminar Velocity Profile
Dynamic Turbulent Boundary Layers
Mass Flux in Turbulent Boundary Layers
Oscillating Flow
Concepts, Conclusions, and Caveats

Online Supplements
7.1 Converting OH⁻ Concentration to pH
7.2 The Blasius Profile
7.3 z of u_{max}

Chapter 8 FLUID-DYNAMIC FORCES I
Introduction and Low-Reynolds-Number Flows
Drag at Low Reynolds Number
Low-Re Ecomechanics: Sensory Ecology and Predator-Prey Interactions
Concepts, Conclusions, and Caveats

Online Supplements
8.1 Sinking Rates of Diatoms
8.2 Fluid Strain Around a Sphere

Chapter 9 FLUID-DYNAMIC FORCES II
High Reynolds Numbers
Forces
Force Coefficients
Rules of Thumb
Ecomechanical Examples
Concepts, Conclusions, and Caveats

Online Supplements
9.1 Pressure Gradient in an Accelerating Fluid

For general queries, contact webmaster@press.princeton.edu
Chapter 10 **LOCOMOTION**

158

The Physics of Locomotion 158
Sources of Power: The Motors 162
Drifting: Passive Locomotion 167
Crawling: Adhesive Locomotion 168
Burrowing 171
Walking and Running 172
Wheels 174
Swimming 175
Gliding Flight 177
Flapping Flight 180
Speed and Power of Transport: A Summary 182
Cost of Transport 183
Climbing and Jumping 186
Locomotion in Context 188
Winter Migration 189
Concepts, Conclusions, and Caveats 193

Online Supplements

10.1 Muscle Kinetics
10.2 The Power of Adhesive Locomotion
10.3 Speed of Muscle Contraction in a Snail
10.4 Bending Cilia
10.5 Internal Power of Legged Locomotion
10.6 Mechanics of Flagellar Thrust
10.7 Components of Drag in Flight
10.8 Acceleration in a Jump
10.9 When Is It Viable to Migrate?

Chapter 11 **THERMAL MECHANICS I**

195

Introduction, Solar Heating, Convection, Metabolism, and Evaporation
Why Temperature Matters
Heat-Budget Models: A Prospectus

For general queries, contact webmaster@press.princeton.edu
Contents

Heat 198
Temperature 199
Specific Heat 200
Thermal Diffusion 200
Latent Heat 201
The Heat Budget 201
Solar Heating 202
Convective Heat Transport 206
A Convection-Dominated System: Littorine Snails 209
Metabolism 212
Evaporation and Condensation 214
Systems Dominated by Convection and Evaporation: Desert Herbs and Seaweeds 215
Concepts and Interim Conclusions 219

Online Supplements
11.1 Measuring Temperature
11.2 Solar Heat Influx
11.3 Measuring the Heat-Transfer Coefficient
11.4 A Nontraditional Mass-Transfer Coefficient
11.5 Relating Mass Transfer to Heat Transfer
11.6 Calculating Wet-Bulb Temperature

Chapter 12 THERMAL MECHANICS II
Stored Energy, Conduction, Long-Wave Radiation, and Synthesis 221
Stored Energy 221
Conductive Heat Transport 224
Long-Wave Radiative Heat Transfer 229
The Heat Budget Revisited 235
The Environmental Niche 237
Concepts, Conclusions, and Caveats 240

Online Supplements
12.1 Response Time
12.2 Calculating the Thermal Gradient
12.3 Linearizing Long-Wave Heat Exchange
12.4 Emissivity of the Sky
12.5 Solving the Time-Dependent Heat-Budget Equation
Part III Solid Mechanics

Chapter 13 BIOLOGICAL MATERIALS I

Materials Mechanics 245
Bonding Forces 245
Why Solids Are Elastic 249
Theoretical Strength of Solids 250
Polymers and Soft Elasticity 251
Rubber Elasticity 253
Viscoelasticity 254
Load 255
Stress 255
Strain 258
Elastic Modulus 261
Strain Energy 264
Failure 266
Concepts, Conclusions, and Caveats 267

Online Supplements
13.1 An Alternative Perspective on Shear Loading
13.2 The Utility of True Strain
13.3 The Standard Linear Solid
13.4 Calculating Strain Energy

Chapter 14 BIOLOGICAL MATERIALS II

The Spectrum of Biological Materials 268
Stiffness 268
Strength 271
Toughness 271
Composite Materials 272
Designing a Giant Kelp 276
Mussels, Patch Dynamics, and Disturbance 278
Concepts, Conclusions, and Caveats 280

Online Supplements
14.1 Mechanical Design of Anemones
14.2 Force from Pressure in a Cylinder
14.3 Unidirectional Fiber Reinforcement
14.4 Multidirectional Fiber Reinforcement
Chapter 15 FRACTURE MECHANICS AND FATIGUE 282
Stress Concentrations 282
Energy and Fracture 284
Breaking Stress 287
Fracture Toughness 288
Crack Stoppers 290
Fatigue 291
Fracture and Fatigue in Evolution 294
Concepts, Conclusions, and Caveats 295

Chapter 16 ADHESION AND ADHESION RESISTANCE 297
Attachment and Adhesion 297
Close Physical Contact 298
Pressure-Difference Adhesion 302
Surface Tension and Surface Energy 304
Interaction at the Interface 306
Capillary Adhesion 308
Viscous Adhesion 309
Glue 311
Adhesives Compared 312
Adhesion Is Easy 313
Adhesion in Reverse 315
Concepts, Conclusions, and Caveats 318

Chapter 17 STATICS 319
Bending and Twisting 319
Bending 319
Specifying I 323
Cantilever Bending 326
Stress in Corals 328
Shear 331
Anemones as Beams 334
Maximum Height 335
Optimal Shape 338
Torsion 341
Concepts, Conclusions, and Caveats 343

Online Supplements
17.1 I of a Circle 343
17.2 Approximate I of a Hollow Circular Cross Section 343

For general queries, contact webmaster@press.princeton.edu
17.3 I for Hollow Beams of Constant Volume
17.4 Thickness per Radius for a Hollow Beam
17.5 I of Complex Shapes
17.6 Deflection of a Cantilever
17.7 Stiffness of Divided Beams
17.8 Maximum Height
17.9 Optimal Shape of a Cantilever
17.10 Second Polar Moment of Area

Chapter 18 DYNAMICS
The Mechanics of Oscillation 345
Harmonic Oscillation 345
Damped Harmonic Motion 350
Forced Harmonic Motion 353
Abruptly Applied Loads 356
Nonlinear Springs and Chaos 359
Concepts, Conclusions, and Caveats 359

Online Supplements
18.1 Damped Harmonic Motion
18.2 Forced Harmonic Motion

Part IV Ecological Mechanics

Chapter 19 ECOLOGICAL VARIATION AND ITS CONSEQUENCES 363
Scale Transition Theory: A Brief Introduction 364
Background 366
Scale Transition Theory in Action: Intermediate Disturbance 369
Covariance 371
Examples from Nature 376
Concepts, Conclusions, and Caveats 377

Online Supplements
19.1 Deriving the Scale Transition Equation
19.2 S_T of Some Common Response Functions
19.3 Poisson Interval Statistics
19.4 The Effect of Covariance on the Mean
19.5 The Effect of Variation in More Complicated Functions

For general queries, contact webmaster@press.princeton.edu
Chapter 20 SPECTRAL ANALYSIS

Quantifying Variation in Time and Space

- Sequence, Signal, and Power 380
- Fourier Series 383
- Choosing Frequencies: The Role of Harmonics 386
- Fourier Coefficients 387
- The Periodogram 388
- Specifying Fourier Coefficients 391
- The Power Spectrum 397
- Spectral Analysis in Biology 401
- Concepts, Conclusions, and Caveats 404

Online Supplements

- 20.1 The Sum of Sine and Cosine Waves
- 20.2 Specifying Fourier Coefficients
- 20.3 β at the Nyquist Frequency
- 20.4 Practical Considerations in Spectral Analysis

Chapter 21 QUANTIFYING THE EFFECTS OF SCALE

1/f Noise 406
- The Color of Spectral Data 408
- Patterns of 1/f Noise 408
- Asymptotes for $\beta < 1$ 412
- Estimating β and k_{var} 412
- Scale Transition: An Example 413
- Other Spectra 415
- Concepts, Conclusions, and Caveats 416

Online Supplements

- 21.1 Calculating the Time or Distance Required to Reach a Given Fraction of Maximum Variance
- 21.2 Caveats Regarding the Estimation of k_{var} and β
- 21.3 Numerically Integrating a Spectrum

Chapter 22 BIOLOGY OF EXTREMES

- Statistics of Extremes 420
- Extreme Caveats 428
- An Interim Synopsis 432
- The Environmental Bootstrap 432
Evolution and Extremes 439
Bootstrap Caveats 441
Concepts and Conclusions 442

Online Supplements
22.1 The Normal Curve
22.2 Probability and Return Time
22.3 Connections to the Poisson Interval Distribution

Chapter 23 PATTERN AND SELF-ORGANIZATION 443
Facilitation-Inhibition 444
Criticality 451
Concepts, Conclusion, and Caveats 454

Chapter 24 THOUGHTS AT THE END 455
Take-Home Messages 455
Plankton Ecology 458
A Look to the Future 462

ONLINE RESOURCES
Additional supporting materials can be found at http://press.princeton.edu/titles/10641.html

References 463
Symbol Index 479
Author Index 485
Subject Index 489