Contents

List of Illustrations xi
Preface to the Paperback Edition xiii
Preface xxiii
Introduction 3

CHAPTER ONE
The Puzzles of Imaginary Numbers 8
The early work of Scipione del Ferro in cubic equations, and of Niccolo Tartaglia, Girolamo Cardano, and Rafael Bombelli on complex numbers as the roots of cubic equations. Francoise Viète and noncomplex trigonometric solutions to the irreducible cubic.

CHAPTER TWO
A First Try at Understanding the Geometry of \(\sqrt{-1} \) 31
René Descartes' interpretation of imaginary numbers as meaning physical impossibility in geometric constructions, and John Wallis on physically interpreting imaginary numbers.

CHAPTER THREE
The Puzzles Start to Clear 48
The long-lost work of Casper Wessel on the geometric interpretation of complex numbers, \(\sqrt{-1} \) as the rotation operator in the complex plane. The easy derivation of trigonometric identities with De Moivre's theorem. Complex exponentials. Factoring the cyclotomic equation. The rediscovery of Wessel's ideas by the Abbé Adrien-Quentin Buée and Jean-Robert Argand. Warren and Mourey rediscover Buée and Argand. William Rowan Hamilton and complex numbers as couples of real numbers. Carl Friedrich Gauss.

CHAPTER FOUR
Using Complex Numbers 84
CONTENTS

CHAPTER FIVE
More Uses of Complex Numbers 105
Taking a shortcut through hyperspace with complex functions. Maximum walks in the complex plane. Kepler’s laws and satellite orbits. Complex numbers in electrical engineering.

CHAPTER SIX
Wizard Mathematics 142
The mathematical gems of Leonhard Euler, John Bernoulli, Count Fagnano, Roger Cotes, and Georg Riemann. Many-valued functions. The hyperbolic functions. Karl Schellbach’s method of using \((\sqrt{-1})^{\sqrt{-1}}\) to calculate \(\pi\).
Euler again, using complex numbers to calculate real integrals, and the gamma and zeta functions.

CHAPTER SEVEN
The Nineteenth Century, Cauchy, and the Beginning of Complex Function Theory 187

APPENDIXES 227
A. The Fundamental Theorem of Algebra 227
B. The Complex Roots of a Transcendental Equation 230
C. \((\sqrt{-1})^{\sqrt{-1}}\) to 135 Decimal Places, and How It Was Computed 235
D. Solving Clausen’s Puzzle 238
E. Deriving the Differential Equation for the Phase-Shift Oscillator 240
F. The Value of the Gamma Function on the Critical Line 244

Notes 247
Name Index 261
Subject Index 265
Acknowledgments 269