Contents

Preface xiii

1 Introduction 1
 1.1 Optimal control problem 1
 1.2 Some background on finite-dimensional optimization 3
 1.2.1 Unconstrained optimization 4
 1.2.2 Constrained optimization 11
 1.3 Preview of infinite-dimensional optimization 17
 1.3.1 Function spaces, norms, and local minima 18
 1.3.2 First variation and first-order necessary condition . 19
 1.3.3 Second variation and second-order conditions . . . 21
 1.3.4 Global minima and convex problems 23
 1.4 Notes and references for Chapter 1 24

2 Calculus of Variations 26
 2.1 Examples of variational problems 26
 2.1.1 Dido’s isoperimetric problem 26
 2.1.2 Light reflection and refraction 27
 2.1.3 Catenary . 28
 2.1.4 Brachistochrone 30
 2.2 Basic calculus of variations problem 32
 2.2.1 Weak and strong extrema 33
 2.3 First-order necessary conditions for weak extrema 34
 2.3.1 Euler-Lagrange equation 35
 2.3.2 Historical remarks 39
 2.3.3 Technical remarks 40
2.3.4 Two special cases ... 41
2.3.5 Variable-endpoint problems 42
2.4 Hamiltonian formalism and mechanics 44
 2.4.1 Hamilton’s canonical equations 45
 2.4.2 Legendre transformation 46
 2.4.3 Principle of least action and conservation laws 48
2.5 Variational problems with constraints 51
 2.5.1 Integral constraints 52
 2.5.2 Non-integral constraints 55
2.6 Second-order conditions 58
 2.6.1 Legendre’s necessary condition for a weak minimum 59
 2.6.2 Sufficient condition for a weak minimum 62
2.7 Notes and references for Chapter 2 68

3 From Calculus of Variations to Optimal Control 71
 3.1 Necessary conditions for strong extrema 71
 3.1.1 Weierstrass-Erdmann corner conditions 71
 3.1.2 Weierstrass excess function 76
 3.2 Calculus of variations versus optimal control 81
 3.3 Optimal control problem formulation and assumptions 83
 3.3.1 Control system 83
 3.3.2 Cost functional 86
 3.3.3 Target set ... 88
 3.4 Variational approach to the fixed-time, free-endpoint problem 89
 3.4.1 Preliminaries .. 89
 3.4.2 First variation 92
 3.4.3 Second variation 95
 3.4.4 Some comments 96
 3.4.5 Critique of the variational approach and preview of the maximum principle 98
 3.5 Notes and references for Chapter 3 100
4 The Maximum Principle

4.1 Statement of the maximum principle

4.1.1 Basic fixed-endpoint control problem

4.1.2 Basic variable-endpoint control problem

4.2 Proof of the maximum principle

4.2.1 From Lagrange to Mayer form

4.2.2 Temporal control perturbation

4.2.3 Spatial control perturbation

4.2.4 Variational equation

4.2.5 Terminal cone

4.2.6 Key topological lemma

4.2.7 Separating hyperplane

4.2.8 Adjoint equation

4.2.9 Properties of the Hamiltonian

4.2.10 Transversality condition

4.3 Discussion of the maximum principle

4.3.1 Changes of variables

4.4 Time-optimal control problems

4.4.1 Example: double integrator

4.4.2 Bang-bang principle for linear systems

4.4.3 Nonlinear systems, singular controls, and Lie brackets

4.4.4 Fuller’s problem

4.5 Existence of optimal controls

4.6 Notes and references for Chapter 4

5 The Hamilton-Jacobi-Bellman Equation

5.1 Dynamic programming and the HJB equation

5.1.1 Motivation: the discrete problem

5.1.2 Principle of optimality

5.1.3 HJB equation

5.1.4 Sufficient condition for optimality

5.1.5 Historical remarks

5.2 HJB equation versus the maximum principle
CONTENTS

5.2.1 Example: nondifferentiable value function 170
5.3 Viscosity solutions of the HJB equation 172
 5.3.1 One-sided differentials 172
 5.3.2 Viscosity solutions of PDEs 174
 5.3.3 HJB equation and the value function 176
5.4 Notes and references for Chapter 5 178

6 The Linear Quadratic Regulator 180
 6.1 Finite-horizon LQR problem 180
 6.1.1 Candidate optimal feedback law 181
 6.1.2 Riccati differential equation 183
 6.1.3 Value function and optimality 185
 6.1.4 Global existence of solution for the RDE 187
 6.2 Infinite-horizon LQR problem 189
 6.2.1 Existence and properties of the limit 190
 6.2.2 Infinite-horizon problem and its solution 193
 6.2.3 Closed-loop stability 194
 6.2.4 Complete result and discussion 196
 6.3 Notes and references for Chapter 6 199

7 Advanced Topics 200
 7.1 Maximum principle on manifolds 200
 7.1.1 Differentiable manifolds 201
 7.1.2 Re-interpreting the maximum principle 203
 7.1.3 Symplectic geometry and Hamiltonian flows 206
 7.2 HJB equation, canonical equations, and characteristics 207
 7.2.1 Method of characteristics 208
 7.2.2 Canonical equations as characteristics of the HJB equation 211
 7.3 Riccati equations and inequalities in robust control 212
 7.3.1 \(L_2 \) gain 213
 7.3.2 \(H_\infty \) control problem 216
 7.3.3 Riccati inequalities and LMIs 219
 7.4 Maximum principle for hybrid control systems 219