Contents

Preface xix
How to Use This Book xxiii
Acknowledgments xxvii

1 Sound Itself 1

1 How Sound Propagates 3
 1.1 Push and Pushback: Impedance 6
 What Is Impedance, Really? 8
 Antireflection Strategies 9
 Impedance and the Violin 10
 Bullwhip—The High Art of Impedance Matching 11
 Impedance Mismatches Are Not Always Bad 11
 Impedance of Masses and Springs Together 12
 Defining and Measuring Impedance 12
 1.2 Impedance of Air 13
 1.3 Propagation of Sound in Pipes 16
 Reflection of Sound at a Closed End 17
 Reflection of Sound at an Open End 17
 Reflection of Sound at the Junction of Different-diameter Pipes 19

2 Wave Phenomenology 21
 2.1 Relation between Speed, Frequency, and Wavelength 21
 2.2 Falloff with Distance from the Source 23
 Loudness Falloff with Distance 24
 Ripple Simulation 25
 2.3 Measuring the Speed of Sound 26
 Box 2.1 Father Marin Mersenne 27
Contents

2.4 Interference and Superposition 27
 Active Noise Cancellation—Deliberate Destructive Interference 29
2.5 Reflection 29
 Shiny and Matte 30
2.6 Refraction 32
2.7 Diffraction 34
 Diffraction at an Edge 35
 Brush with the Law of Similarity 36
 Active Noise Reduction of Diffracted Sound 37
2.8 Schlieren Photography 38
2.9 Ray Tracing 39
 Corner (Retro-) Reflector 40
 Box 2.2 The SOFAR Channel 43
2.10 Measures of Sound Power 44
 Box 2.3 How Big? 47

II Analyzing Sound 49

3 Sound and Sinusoids 51
 3.1 The Atom of Sound 52
 Building a Sine Wave 52
 3.2 Sinusoidal Vibration 54
 The Velocity 55
 The Tuning Fork 56
 The Sound of a Sine 58
 3.3 The Pendulum 58
 3.4 The Double Tuning Fork 59
 3.5 Microscopes for Vibration 62
 3.6 Spying on Conversations 64
 3.7 Fourier Decomposition 64
 3.8 Power Spectra 66
 3.9 Periodic Functions 68
 3.10 Aperiodic Signals and Vibrations 69

4 The Power of Autocorrelation 71
 4.1 Obtaining Autocorrelation Functions 74
 Box 4.1 Autocorrelation Example: Temperature in Fairbanks 72
 4.2 Autocorrelation and Power for a Sum of Sinusoids 74
 Getting the Autocorrelation 74
 Computing the Power Spectrum 76
 4.3 Autocorrelation for Any Signal 76
 Computing the Autocorrelation 77
 Autocorrelation by Color 77

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.
Contents

4. Power Spectrum from a General Autocorrelation
- Power Spectrum by Color 81
- The Wiener-Khinchin Theorem 82

5. The Uncertainty Principle 82

6. The Wiener-Khinchin Theorem 82

7. Noise and Autocorrelation 87
- Autocorrelation and Fast Echoes 87
- Masking Signals with Noise 87

Box 4.2 Famous Fourier Transform Pairs 88

5 Sonograms 89
- What Is a Sonogram? 89
- Choosing Sonogram Parameters 91

6 Capturing and Re-creating Sound 93
- Galileo—The First Recording? 93
- Phonograph—Sound Trace 95
- Microphones and Loudspeakers 97
- Sound Reproduction Fidelity 98
- The Problem of Head Movement and Visual Concordance 99
- The Edison Diamond Disc Phonograph 99
- Digital Recording and Playback 100
- Impulse Response and the Re-creation of a Soundspace 103

III Making Sound 105

7 Sources of Sound 107
- Amplification without Active Amplifiers 108
- Walls as Passive Amplifiers 109
- Reactive versus Resistive Forces 110
- The Method of Images 111
- The 30-degree Wedge 112
- The Horn 114
- Safi al-Din Gets It Right in the Thirteenth Century 114
- Low-frequency Piston Source 116
- Monopole Source in a Pipe 117
- Horns as Impedance Control 117
- The Mouth of the Horn 118
- The Shape of the Horn 118

Box 7.1 The Exponential Horn 119

Speaking Trumpets and Ear Trumpets 120

Box 7.2 Horns through the Ages 121

7.4 The Siren 125

Software Siren 127

7.5 Reciprocity of Sound Propagation 128

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
Contents

7.6 Law of Similarity 130
7.7 Dipole Sources 131
 Dipoles as Acoustical Short-circuiting 132
 Dipoles as Destructive Interference 132
 Example Dipole Sources 133
 Relative Phase of Loudspeakers 134
 Simulations of a Dipole Source 135
 Baffling a Dipole 136
7.8 Tuning Fork—A Quadrupole Source 137
7.9 Supersonic Sources 138
 Lightning and Thunder 142
7.10 Sound Launched by Surfaces 142
 Sound Launched by a Baffled Piston 143
 Building Up Larger Pistons from Small Ones 144
 Force Goes in Phase with Velocity for Larger Pistons 145
7.11 Sound Launched by Surface-bending Waves 146
 Supersonic versus Subsonic Surface Waves 148
 The Critical Frequency 149
 Sound Radiation Pattern from Surface Waves 150
 Box 7.3 Seneca Guns and Cookie Cutters 153
7.12 Soundboards and Surface Sound Generation 158
 Box 7.4 The SST That Never Was 159
7.13 Thermophones—Sound without Vibration 161
 Box 7.5 Sound That Won’t Leave 162
7.14 The (Many) Other Sources of Sound 163
 The 95 dB Sun Chips Bag 163

8 Making a Stretched String 165
8.1 Single Bead 167
 Tension and Force 167
 The Motion of the Bead 168
8.2 Two Beads 169
 Box 8.1 Working with Loaded String 169
 The Sinusoid Reigns Supreme 170
8.3 Three Beads 171
8.4 Combining Modes 172
8.5 More Beads 172
 The Sound and Spectrum of a Pluck 173
 Box 8.2 Spectrum for a Large Number of Beads 176
8.6 Putting Shape and Time Together 178
8.7 Combining Modes 179
8.8 Traveling Waves on the String 180
 Standing versus Traveling Waves 181
 Fourier Again 181
 Ends and Boundaries 181

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
Contents

8.3 Box Experiment with Loaded String 182
Periodic or Not? 183
8.9 The Imperfect String 184
Weighted String 184
Real Strings 185
8.10 Membranes as Stretched Bead-filament Systems 185
8.11 A Metal Chair 187
8.12 Decomposing Complex Vibrations 187
Mersenne and Sauveur 188

9 Resonance Rules 191
9.1 Resonance and Constructive Interference 192
Proximity Resonance Revisited 192
Equivalent Viewpoints 192
Generalizing Proximity Resonance to Any Constructive Addition 193
9.2 Box 9.1 Echoes from Atoms 195
9.2 Definition of Driven Resonance 196
Remote versus Local Sources: Reciprocity 197
Multiple Sources 198
Autonomous Systems 198
9.2 Box 9.2 Resonance and the Divine Harmony 199

10 Damped and Driven Oscillation 202
10.1 Friction and Work 202
10.2 Friction and Decay 203
Kicked Damped Oscillator 204
10.3 Quality Factor Q 204
Equivalent Definitions of Q 204
10.4 Driving the Oscillator 207
Frequency of the Driven System 209
10.5 Resonance 209
Phase of the Drive: Reactive versus Resistive Force 209
Power near Resonance 211
10.6 Impedance and Forced Oscillation 212
Power, Impedance, and Admittance 213
Oscillator versus Wave Resonance 214
Driving a String 215
10.7 Coupling of Two or More Oscillators 216
Pure Modes 216
Two Coupled Pendula of Different Frequency 218
10.8 Tug-of-War: Resonance versus Damping 221
A Physical Model 223

11 Impulse Response 225
11.1 Impulse and Power 226
Five Easy Cases 226
Power and Echo 229

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2</td>
<td>Average Power Theorem</td>
<td>231</td>
</tr>
<tr>
<td>Caveat for Proximity Resonance</td>
<td>232</td>
<td></td>
</tr>
<tr>
<td>11.3</td>
<td>Sculpting a Power Spectrum</td>
<td>232</td>
</tr>
<tr>
<td>Echo, Resonance, and Q</td>
<td>234</td>
<td></td>
</tr>
<tr>
<td>The Pop of a Cork and Its Echoes</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>Sculpting Principle for Any Signal</td>
<td>238</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Impulse and Power for Complex Systems</td>
<td>239</td>
</tr>
<tr>
<td>12.1</td>
<td>Mode Density</td>
<td>239</td>
</tr>
<tr>
<td>12.2</td>
<td>Strength of Isolated Resonances</td>
<td>240</td>
</tr>
<tr>
<td>12.3</td>
<td>Impulse and Power Spectrum in an Open Wedge</td>
<td>241</td>
</tr>
<tr>
<td>12.4</td>
<td>High-Q Resonances: From Isolated to Densely Packed</td>
<td>245</td>
</tr>
<tr>
<td>12.5</td>
<td>Schroeder Frequency</td>
<td>246</td>
</tr>
<tr>
<td>Power Fluctuations above the Schroeder Frequency</td>
<td>247</td>
<td></td>
</tr>
<tr>
<td>Statistics of the Fluctuations</td>
<td>247</td>
<td></td>
</tr>
<tr>
<td>Statistics of the Wedge Spectrum</td>
<td>249</td>
<td></td>
</tr>
<tr>
<td>12.6</td>
<td>Is a Piano Soundboard Resonant?</td>
<td>250</td>
</tr>
<tr>
<td>Reverberant, Not Resonant</td>
<td>251</td>
<td></td>
</tr>
<tr>
<td>Foiling Short-circuiting</td>
<td>253</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Helmholtz Resonators</td>
<td>255</td>
</tr>
<tr>
<td>13.1</td>
<td>How Helmholtz Resonators Work</td>
<td>255</td>
</tr>
<tr>
<td>Box 13.1 Deriving the Helmholtz Mode Frequency</td>
<td>257</td>
<td></td>
</tr>
<tr>
<td>The Ocarina: Size but Not Shape</td>
<td>257</td>
<td></td>
</tr>
<tr>
<td>13.2</td>
<td>Helmholtz Resonators and the Law of Similarity</td>
<td>258</td>
</tr>
<tr>
<td>Higher Modes</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>Ad Hominem Resonators</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>13.3</td>
<td>Phase and Power</td>
<td>261</td>
</tr>
<tr>
<td>Preresonance</td>
<td>262</td>
<td></td>
</tr>
<tr>
<td>Postresonance</td>
<td>262</td>
<td></td>
</tr>
<tr>
<td>On Resonance</td>
<td>263</td>
<td></td>
</tr>
<tr>
<td>13.4</td>
<td>Resonance and Short-circuiting of Pairs of Resonators</td>
<td>264</td>
</tr>
<tr>
<td>13.5</td>
<td>Helmholtz Resonance Amplification of Sound</td>
<td>266</td>
</tr>
<tr>
<td>Resonance and Reciprocity</td>
<td>266</td>
<td></td>
</tr>
<tr>
<td>13.6</td>
<td>Helmholtz Resonators at Work</td>
<td>266</td>
</tr>
<tr>
<td>Resonators as Transducers for Sound</td>
<td>267</td>
<td></td>
</tr>
<tr>
<td>Ported Loudspeakers</td>
<td>268</td>
<td></td>
</tr>
<tr>
<td>Box 13.2 Sound Enhancement in Ancient Greece?</td>
<td>268</td>
<td></td>
</tr>
<tr>
<td>Sound Attenuation</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>Helmholtz Bass Traps</td>
<td>271</td>
<td></td>
</tr>
<tr>
<td>Your Automobile as a Helmholtz Resonator</td>
<td>272</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Sound Generation by Vortices and Turbulence</td>
<td>273</td>
</tr>
<tr>
<td>14.1</td>
<td>Vortex Streets</td>
<td>273</td>
</tr>
<tr>
<td>Föppl Vortices</td>
<td>274</td>
<td></td>
</tr>
<tr>
<td>Wagging, Shedding, and Sound Generation</td>
<td>274</td>
<td></td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.2 Resonant Vortex Shedding</td>
<td>276</td>
</tr>
<tr>
<td>Entrainment</td>
<td>277</td>
</tr>
<tr>
<td>Aeolian Harps Big and Small</td>
<td>278</td>
</tr>
<tr>
<td>14.3 Reynolds Number</td>
<td>278</td>
</tr>
<tr>
<td>14.4 Edge Tones</td>
<td>279</td>
</tr>
<tr>
<td>14.5 Whistling—Ring and Slit Vortices</td>
<td>281</td>
</tr>
<tr>
<td>Instability and Sensitivity</td>
<td>281</td>
</tr>
<tr>
<td>14.6 What Is Happening in a Lip Whistle?</td>
<td>281</td>
</tr>
<tr>
<td>Box 14.1 Experiment: Second Formant Resonance</td>
<td>284</td>
</tr>
<tr>
<td>14.7 Sound from Turbulence</td>
<td>285</td>
</tr>
<tr>
<td>Jet Noise</td>
<td>285</td>
</tr>
<tr>
<td>Turbulence: Fricatives and Speech</td>
<td>286</td>
</tr>
<tr>
<td>Box 14.2 Experiment: Speech Turbulence</td>
<td>287</td>
</tr>
<tr>
<td>14.8 Other Sources of Noise</td>
<td>287</td>
</tr>
<tr>
<td>Noise from Tires</td>
<td>288</td>
</tr>
<tr>
<td>15 Membranes and Shells</td>
<td>289</td>
</tr>
<tr>
<td>15.1 Networks of Strings</td>
<td>289</td>
</tr>
<tr>
<td>15.2 Stretched Membranes</td>
<td>290</td>
</tr>
<tr>
<td>Box 15.1 Paul Falstad's Stretched Membrane Applets</td>
<td>290</td>
</tr>
<tr>
<td>15.3 Vibrations of Plates and Shells</td>
<td>292</td>
</tr>
<tr>
<td>15.4 Chladni and the Era of Modern Acoustics</td>
<td>292</td>
</tr>
<tr>
<td>Box 15.2 Chladni and Napoleon</td>
<td>295</td>
</tr>
<tr>
<td>15.5 Baffling and Acoustic Short-circuiting</td>
<td>296</td>
</tr>
<tr>
<td>15.6 Bowing a Metal Plate</td>
<td>297</td>
</tr>
<tr>
<td>15.7 Belleplates</td>
<td>298</td>
</tr>
<tr>
<td>15.8 Kettle Drums</td>
<td>299</td>
</tr>
<tr>
<td>16 Wind Instruments</td>
<td>305</td>
</tr>
<tr>
<td>16.1 Propagation of Sound in Pipes—Continued</td>
<td>305</td>
</tr>
<tr>
<td>Resonance in Tubes—Colored Echoes</td>
<td>306</td>
</tr>
<tr>
<td>Wall Losses</td>
<td>307</td>
</tr>
<tr>
<td>Box 16.1 Experiment: Resonance Frequencies and Wall Losses in a Tube</td>
<td>308</td>
</tr>
<tr>
<td>16.2 Frequencies of Tube Modes</td>
<td>309</td>
</tr>
<tr>
<td>Cylindrical Bore Tubes</td>
<td>309</td>
</tr>
<tr>
<td>The Conical Bore</td>
<td>312</td>
</tr>
<tr>
<td>The Inside-out Implosion</td>
<td>312</td>
</tr>
<tr>
<td>16.3 The Trumpet</td>
<td>315</td>
</tr>
<tr>
<td>Partials versus Resonances</td>
<td>315</td>
</tr>
<tr>
<td>Shaping the Trumpet's Timbre and Playing Qualities</td>
<td>316</td>
</tr>
<tr>
<td>The Mouthpiece Does Triple Duty</td>
<td>317</td>
</tr>
</tbody>
</table>

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
The Bell Does Triple Duty 320
Box 16.2 Gatekeeper Resonance Effect 320
The Trouble with Treble Boost 322
Box 16.3 The Horn Function 322
The Battle between Resonance and Wall Friction 325
Power in the Upper Partials—Up or Down When a Bell Is Added? 327
The Lip Reed 330
Understanding Nonlinearities: Benade’s Water Trumpet 332
Playing the Resonances on a Trumpet 334
Other Factors: Vocal Tract 336
Valves and Intonation 336
The Natural Trumpet 336
16.4 The Transverse Flute 337
Impedance of a Flute 337
The Flute Cork 338
The Golden Flute 340
16.5 The Clarinet 341
Register Holes 342
Toneholes 343
16.6 The Saxophone 345
The Saxophone Mouthpiece 346
16.7 Blown Closed versus Blown Open 346
Blown Closed 347
Blown Open 348
16.8 The Importance of Vocal Tract Resonances to Wind Instruments 349
Tract Resonances and Playability 349
Bending Down 350

17 Voice 352
17.1 Tubes That Change Diameter or Shape 352
Constriction Yielding a Helmholtz Resonator 355
17.2 The Source: Vocal Folds 356
17.3 Formants 358
Getting Q for Your Vocal Tract 359
17.4 Sayonara Source-filter Model 360
17.5 Formants and Vowels 361
17.6 Formant Tuning in Singing 362
Singer’s Formant 362
17.7 Multiphonics—Playing Two Notes at Once 365
17.8 The Speaking Trumpet (Megaphone) Revisited 367
17.9 Helium and SF, Voice 369
17.10 Vocal Disguise, Mimicry, and Gender Switching 370
17.11 Fricatives and Other Sounds 372
17.12 Organ Pipe—Vox Humana 372

18 Violin 374
18.1 Bowing, Stick-slip, and the Helmholtz Wave 375
Contents

18.2 The Bridge and the Bridge Hill 380
18.3 Science and the Violin 384
18.4 Sound Radiation Patterns from a Violin 385
18.5 Strad or Bust? 386
18.6 The Helmholtz Air Mode 388
18.7 The Wolf 389
18.8 Summary of the Violin 390
18.9 Nondestructive Modifications 390

18 Breakdown of the Helmholtz Wave 391

19 Piano 392
19.1 The Railsback Curve 393
19.2 Three Strings per Key 395
19.3 The Hammer 396
Where Should the Hammer Hit the String? 397
Shape, Mass, and Texture 398
19.4 Digital Piano 398

20 Hybrid Musical Instruments 400
20.1 Stroh Violin 400
20.2 Aeolian Harp 401
20.3 Tromba Marina 403
20.4 Instruments Based on Near-field Capture (NFC) 403
The Marimba 404
20.5 Applying the NFC Mechanism 408
Savart’s Cup and Resonator 409
Helmholtz Resonator Enhancement of a Tuning Fork 409
Wind Chimes and the Javanese Angklung 410
Other Hybrid and Unusual Musical Instruments 412

V Psychoacoustics and Music 413

21 Mechanisms of Hearing 415
21.1 Anatomy of the Hearing System 416
21.2 Outer Ear: Direction Detection 417
Repetition Resonances and Antiresonances (Peaks and Notches) 418
21.3 Middle Ear: Masterpiece of Impedance Transduction 419
Lever Action 420
21.4 Inner Ear: Masterpiece of Detection 422
Initial Frequency Sorting 422
Transduction to Nerve Impulses 424
Amplification and Sharpening 424
Sending Data to the Auditory Cortex 425

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
Contents

21.5 The Bionic Ear 426
Box 21.1 Resonance and the Ear 428

22 Loudness 431
22.1 Fechner’s (Weber’s) Law 431
22.2 Equal Loudness Curves 432
22.3 Masking 434
22.4 Measuring Loudness 435

23 Pitch Perception 437
23.1 Overview 437
23.2 Pitch Is Not Partial 438
23.3 Pitch Is Not Periodicity 440
23.4 Pitched Battles 440
23.5 The Siren 442
23.6 Ohm’s Law 443
23.7 Seebeck’s Mistake 444
23.8 Ohm’s Blunder 444
23.9 Helmholtz Falls Short 445
23.10 A Dramatic Residue Pitch Effect 447
Truth or Illusion? 449
23.11 Autocorrelation and Pitch 449
23.12 A Simple Formula for Pitch 450
23.13 Examples: Autocorrelation and Pitch 453
23.14 Seebeck’s Pitch Experiments 456
The Marquee Effect 458
23.15 Shepard Tones 459
Shepard Tones and Autocorrelation 461
23.16 Chimes: Pitch without a Partial 463
The Hosanna Bell in Freiburg 464
Pitch of a Kettle Drum 465
23.17 Repetition Pitch 466
Huygens at Chantilly 467
Temple of Kukulkan, Chichén Itzá 468
Ground Reflections 469
23.18 Quantifying Frequency 472
Cents 472
Just Noticeable Difference (JND) 473
Time or Place? 473
23.19 Pitch Class, the Octave Ambiguity, and Perfect Pitch 475
23.20 Parsing and Persistence: Analytic versus Synthetic Hearing 476
23.21 Deutsch’s Octave Illusion 477
Pitch and Loudness 478
23.22 An Extended Definition of Pitch 478
24 Timbre 480
 24.1 Timbre and Phase 480
 Shape Depends on Phase 480
 Ohm-Helmholtz Phase Law 481
 Rationale for Insensitivity to Relative Phase of Harmonic Partials 482
 24.2 Amplitude and Timbre Beats 483
 Generalizing the Concept of Beats 484
 24.3 Waveform Beats and the Phase Law 484
 24.4 The Perception of Waveform Beats 487
 24.5 A Dramatic Phase Sensitivity 488
 24.6 Timbre and Context 489
 Box 24.1 Helmholtz’s and Koenig’s Ingenious Tests of the
 Ohm-Helmholtz Phase Law 490
 24.7 Timbre, Loudness, and Shock Waves 492

25 Phantom Tones 493
 25.1 Lies and Illusions 493
 25.2 Sounds That Aren’t There 495
 Hearing Phantom Tones 495
 25.3 How and Where Do Phantom Tones Arise? 496
 Mechanical Causes 496
 Neural Causes and the Auditory Cortex 497
 25.4 Beat Tones 499
 Phantom Loudness Beat Tones 499
 Examples of Beat Tones 500
 25.5 Nonlinear Harmonic Generation 501
 Box 25.1 Experiment in Nonlinear Harmonic Generation 502
 Box 25.2 Rudolph Koenig 503

26 Dissonance and Temperament 505
 26.1 Critical Bands 507
 Autodissonance 508
 26.2 Figuring Dissonance 510
 26.3 Helmholtz Theory of Consonance and Dissonance 512
 Trouble with 7 and 11? 515
 26.4 The Impossible Perfection of Pythagoras 516
 The Perfect Fifth as the Basis for a Musical Scale 516
 Another Path to a Musical Scale 518
 Pythagorean Just Intonation 519
 26.5 The Pythagorean Comma 520
 26.6 The Circular Musical Scale and the Circle of Fifths 522
 The Wolf Fifth 523
 26.7 The Modern Solution: Equal Temperament 524
 The Barbershop Seventh—Just versus Equal 526
 26.8 Stretched Scales and Partials—Extreme Tests of
 Dissonance Theory 527
 26.9 Downshifting Chopin 528
Contents

VI Soundspaces 531

27 Modern Architectural Acoustics 533
 27.1 Rooms as Resonant Spaces 533
 Why Do Surfaces Absorb Sound? 536
 Coloring Sound with Walls 537
 W. C. Sabine and Architectural Acoustics 537
 The Right Questions 538
 Decay of Reverberations 539
 Box 27.1 Sabine’s Experiments 540

27.3 Understanding τ_{40} 540
 Box 27.2 Deriving the Sabine Reverberation Formula 542
 Rectangular Rooms and the Law of Similarity 545
 Strength G 546
 The Problem of Low Frequencies 548

27.4 Diffusion by Walls 548
 Special Shapes 550
 Box 27.3 Acoustics of the Mormon Tabernacle 551

27.6 Auditory Scene 551
 The Precedence Effect 552
 Electronic Enhancement in Concert Halls 553

27.8 Blind Navigation in Spaces 554
 Frequency Response of Rooms and Concert Halls 555
 Power Spectrum and Mode Density 555
 Point-to-point Frequency-dependent Transmission 556

27.10 Reverberation Timeline 559
 Best Hall Acoustics 560
 Acoustical Triumphs and Disasters 560

28 Sound Outdoors 564
 The Battle of Gaines Farm 564
 Long-range Sound Propagation in the Atmosphere 565
 Upwind versus Downwind 567
 Scintillating Sound 569
 Echoes 571
 The Mystery of the Harmonic Echo 572
 Flaws in Rayleigh’s Arguments 574
 Sir William Henry Bragg Gets into the Act 575

Bibliography 579

Index 583