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When Freeman Dyson, the physicist, greeted John Forbes Nash,
Jr. at the Institute for Advanced Study one day in the early

1990s, he hardly expected a response. A mathematics legend in his twen-
ties, Nash had suffered for decades from a devastating mental illness.
A mute, ghost-like figure who scrawled mysterious messages on black-
boards and occupied himself with numerological calculations, he was
known around Princeton only as “the Phantom.”

To Dyson’s astonishment, Nash replied. He’d seen Dyson’s daughter,
an authority on computers, on the news, he said. “It was beautiful,”
recalled Dyson. “Slowly, he just somehow woke up.”

Nash’s miraculous emergence from an illness long considered a life
sentence was neither the first, nor last, surprise twist in an extraordi-
nary life.

The eccentric West Virginian with the movie star looks and Olym-
pian manner burst onto the mathematical scene in 1948. A one-line

In describing John Nash’s contributions to economics and mathematics, I drew from
essays by Avinash Dixit, John Milnor, Roger Myerson, and Ariel Rubinstein as well as from my
biography, A Beautiful Mind. Avinash Dixit and Harold Kuhn kindly commented on my draft.
Any errors are, of course, mine alone.
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letter of recommendation—“This man is a genius.”—introduced the
twenty-year-old to Princeton’s elite math department. A little more than
a year later, Nash had written the twenty-seven-page thesis that would
one day win him a Nobel.

Over the next decade, his stunning achievements and flamboyant
behavior made Nash a celebrity in the mathematics world. Donald
Newman, a mathematician who knew him in the early 1950s, called him
“a bad boy, but a great one.” Lloyd Shapley, a fellow graduate student
at Princeton, said of Nash, “What redeemed him was a clear, logical,
beautiful mind.”

Obsessed with originality, disdainful of authority, supremely self-
confident, Nash rushed in where more conventional minds refused to
tread. “Everyone else would climb a peak by looking for a path some-
where on the mountain,” recalled Newman. “Nash would climb another
mountain altogether and from that distant peak would shine a search-
light back on the first peak.”

By his thirtieth birthday, Nash seemed to have it all: he was married
to a gorgeous young physicist and was about to be promoted to full
professor at MIT; Fortune magazine had just named him one of the
brightest stars of the younger generation of “new” mathematicians.

Less than a year later, however, the brilliant career was shattered.
Diagnosed with paranoid schizophrenia, Nash abruptly resigned from
MIT and fled to Paris on a quixotic quest to become a world citizen.
For the next decade, he was in and out of mental hospitals. By forty,
he’d lost everything: friends, family, profession. Only the compassion of
his wife, Alicia, saved him from homelessness. Sheltered by Alicia and
protected by a handful of loyal former colleagues, Nash haunted the
Princeton campus, in the thrall of a delusion that he was “a religious
figure of great, but secret importance.”

While Nash was lost in his dreams, his name surfaced more and
more often in journals and textbooks in fields as far-flung as economics
and biology, mathematics and political science: “Nash equilibrium,”
“Nash bargaining solution,” “Nash program,” “De Georgi-Nash,”
“Nash embedding,” “Nash-Moser theorem,” “Nash blowing up.”

Outside Princeton, scholars who built on his work often assumed he
was dead. But his ideas were very much alive, becoming more influential
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even as their author sank deeper into obscurity. Nash’s contributions to
pure mathematics—embedding of Riemannian manifolds, existence of
solutions of parabolic and elliptic partial differential equations—paved
the way for important new developments. By the 1980s, his early work
in game theory had permeated economics and helped create new fields
within the discipline, including experimental economics. Philosophers,
biologists, and political scientists adopted his insights.

The growing impact of his ideas was not limited to the groves of
academe. Advised by game theorists, governments around the world be-
gan to auction “public” goods from oil drilling rights to radio spectra,
reorganize markets for electricity, and devise systems for matching doc-
tors and hospitals. In business schools, game theory was becoming a
staple of management training.

The contrast between the influential ideas and the bleak reality of
Nash’s existence was extreme. The usual honors passed him by. He wasn’t
affiliated with a university. He had virtually no income. A small band
of contemporaries had always recognized the importance of his work.
By the late 1980s, their ranks were swelled by younger scholars who
launched a fight to get Nash long-overdue recognition. They succeeded
spectacularly: in 1994, after an explosive behind-the-scenes debate and
a narrow vote, the Swedish Academy of Sciences awarded Nash a No-
bel prize in economics for his early work on non-cooperative games.
The prize, which he shared with Reinhard Selten and John Harsanyi,
was more than an intellectual triumph; it was a victory for those who
believed that mental illness shouldn’t be a bar to the ne plus ultra of
scientific honors.

Most Nobel laureates, while celebrated within their disciplines, re-
main invisible to the public at large. And a Nobel rarely changes win-
ners’ lives profoundly. Nash is an exception. “We helped lift him into
daylight,” said Assar Lindbeck, chairman of the Nobel prize committee.
“We resurrected him in a way.”

Recognition of his ideas has not only redeemed the man—bringing
him back to society and mathematics—but has turned Nash into some-
thing of a cultural hero. Since winning the Nobel, the mathematician
who spent his life “thinking, always thinking” has inspired a New York
Times profile; a biography, A Beautiful Mind ; a Vanity Fair article; a
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Broadway play, Proof ; and, now, a Hollywood movie, directed by Ron
Howard and starring Russell Crowe as Nash.

The ongoing celebration of Nash’s inspiring life and unique achieve-
ments has generated new interest in the seminal papers he published
during his twenties.The Essential JohnNash was conceived to make these
articles accessible to a wide audience. This volume reflects the full range
of Nash’s diverse contributions. For the first time, readers will have the
opportunity to see for themselves why Nash, so nearly forgotten, has
been called “the most remarkable mathematician of the second half of
the century.”*

Nash arrived in Princeton on the first day of Truman’s 1948 re-
election campaign and found himself suddenly at the center of the

mathematical universe. The demigods of twentieth century science were
in residence: Einstein, Gödel, Oppenheimer, and John von Neumann.
“The air is full of mathematical ideas and formulae,” one of Einstein’s
assistants marveled. It was a heady time. “The notion was that the
human mind could accomplish anything with mathematical ideas,” one
of Nash’s fellow graduate students recalled.

The ten or so first-year students were a cocky bunch, but Nash
was even cockier. He loved sparring in the common room. He avoided
classes. He was rarely seen cracking a book. Pacing endlessly, whistling
Bach, he worked inside his own head. John Milnor, the topologist, who
was a freshman that year, said, “It was as if he wanted to rediscover, for
himself, three hundred years of mathematics.” Always on the lookout for
a shortcut to fame, Nash would corner visiting lecturers, clipboard and
writing pad in hand. “He was very much aware of unsolved problems,”
said Milnor. “He really cross-examined people.”

He was bursting with ideas. Norman Steenrod, Nash’s faculty ad-
viser, recalled:

During his first year of graduate work, he presented me with a
characterization of a simple closed curve in the plane. This was
essentially the same one given by Wilder in 1932. Some time later

* Mikhail Gromov, 1997.
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he devised a system of axioms for topology based on the primitive
concept of connectedness. I was able to refer him to papers by
Wallace. During his second year, he showed me a definition of a
new kind of homology group which proved to be the same as the
Reidemeister group based on homotopy chains.

Nash’s first mathematical coup, appropriately enough, involved a
game of his own invention. One afternoon von Neumann strolled

into the common room to see two students hunched over an unfamiliar
game board. Oh, by the way, what was it that they were playing? he later
asked a colleague. “Nash,” came the answer, “Nash.”

Parker Bros. later called Nash’s nifty game, which was invented inde-
pendently by the Danish mathematician Piet Hein, Hex. Nash’s playful
foray into mathematical games foreshadowed a far more serious involve-
ment in a novel branch of mathematics (see chapter 3, this volume).

Today, the language of game theory permeates the social sciences. In
1948, game theory was brand-new and very much in the air at Prince-
ton’s Fine Hall. The notion that games could be used to analyze strate-
gic thinking has a long history. Such games as Kriegspiel, a form of
blind chess, were used to train Prussian officers. And mathematicians
like Emile Borel, Ernst Zermelo, and Hugo Steinhaus studied parlor
games to derive novel mathematical insights. The first formal attempt to
create a theory of games was von Neumann’s 1928 article, “Zur Theorie
der Gesellschaftsspiele,” in which he developed the concept of strategic
interdependence. But game theory as a basic paradigm for studying deci-
sion making in situations where one actor’s best options depend on what
others do did not come into its own until World War II when the British
navy used the theory to improve its hit rate in the campaign against
German submarines. Social scientists discovered it in 1944 when von
Neumann and the Princeton economist Oskar Morgenstern published
their masterpiece, Theory of Games and Economic Behavior, in which the
authors predicted that game theory would eventually do for the study
of markets what calculus had done for physics in Newton’s day.

The pure mathematicians around the university and the Institute
were inclined to view game theory as “just the latest fad” and “déclassé”
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because it was applied, not pure mathematics. But in the eyes of Nash
and his fellow graduate students, von Neumann’s interest in the field
lent it instant glamor.

Nash wrote his first major paper—his now-classic article on bar-
gaining—while attending Albert Tucker’s weekly game theory seminar
during his first year at Princeton, where he met von Neumann and Mor-
genstern. But he had come up with the basic idea as an undergraduate
at Carnegie Tech—in the only economics course (international trade)
he ever took.

Bargaining is an old problem in economics. Despite the rise of
the marketplace with millions of buyers and sellers who never interact
directly, one-on-one deals—between individuals, corporations, govern-
ments, or unions—still loom large in everyday economic life. Yet, before
Nash, economists assumed that the outcome of a two-way bargaining
was determined by psychology and was therefore outside the realm of
economics. They had no formal framework for thinking about how par-
ties to a bargain would interact or how they would split the pie.

Obviously, each participant in a negotiation expects to benefit more
by cooperating than by acting alone. Equally obviously, the terms of the
deal depend on the bargaining power of each. Beyond this, economists
had little to add. No one had discovered principles by which to winnow
unique predictions from a large number of potential outcomes. Little if
any progress had been made since Edgeworth conceded, in 1881, “The
general answer is . . . contract without competition is indeterminate.”

In their opus, von Neumann and Morgenstern had suggested that
“a real understanding” of bargaining lay in defining bilateral exchange as
a “game of strategy.” But they, too, had come up empty. It is easy to see
why: real-life negotiators have an overwhelming number of potential
strategies to choose from—what offers to make, when to make them,
what information, threats, or promises to communicate, and so on.

Nash took a novel tack: he simply finessed the process. He visu-
alized a deal as the outcome of either a process of negotiation or else
independent strategizing by individuals each pursuing his own inter-
est. Instead of defining a solution directly, he asked what reasonable
conditions any division of gains from a bargain would have to satisfy.
He then posited four conditions and, using an ingenious mathematical
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argument, showed that, if the axioms held, a unique solution existed
that maximized the product of the participants’ utilities. Essentially, he
reasoned, how gains are divided reflects how much the deal is worth to
each party and what other alternatives each has.

By formulating the bargaining problem simply and precisely, Nash
showed that a unique solution exists for a large class of such prob-
lems. His approach has become the standard way of modeling the out-
comes of negotiations in a huge theoretical literature spanning many
fields, including labor-management bargaining and international trade
agreements.

Since 1950, the Nash equilibrium—Nash’s Nobel-prize-winning
idea—has become “the analytical structure for studying all situations

of conflict and cooperation.”*
Nash made his breakthrough at the start of his second year at Prince-

ton, describing it to fellow graduate student David Gale. The latter im-
mediately insisted Nash “plant a flag” by submitting the result as a note
to the Proceedings of the National Academy of Sciences. In the note, “Equi-
librium Points in n-Person Games,” Nash gives the general definition of
equilibrium for a large class of games and provides a proof using the
Kakutani fixed point theorem to establish that equilibria in randomized
strategies must exist for any finite normal form game (see chapter 5).

After wrangling for months with Tucker, his thesis adviser, Nash
provided an elegantly concise doctoral dissertation which contained
another proof, using the Brouwer fixed point theorem (see chapter 6).
In his thesis, “Non-Cooperative Games,” Nash drew the all-important
distinction between non-cooperative and cooperative games, namely
between games where players act on their own “without collaboration
or communication with any of the others,” and ones where players have
opportunities to share information, make deals, and join coalitions.
Nash’s theory of games—especially his notion of equilibrium for such
games (now known as Nash equilibrium)—significantly extended the
boundaries of economics as a discipline.

* Roger Myerson 1999.
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All social, political, and economic theory is about interaction among
individuals, each of whom pursues his own objectives (whether altru-
istic or selfish). Before Nash, economics had only one way of formally
describing how economic agents interact, namely, the impersonal mar-
ket. Classical economists like Adam Smith assumed that each partici-
pant regarded the market price beyond his control and simply decided
how much to buy or sell. By some means—i.e., Smith’s famous Invis-
ible Hand—a price emerged that brought overall supply and demand
into balance.

Even in economics, the market paradigm sheds little light on less
impersonal forms of interaction between individuals with greater ability
to influence outcomes. For example, even in markets with vast numbers
of buyers and sellers, individuals have information that others do not,
and decide how much to reveal or conceal and how to interpret infor-
mation revealed by others. And in sociology, anthropology, and political
science, the market as explanatory mechanism was even more inade-
quate. A new paradigm was needed to analyze a wide array of strategic
interactions and to predict their results.

Nash’s solution concept for games with many players provided that
alternative. Economists usually assume that each individual will act to
maximize his or her own objective. The concept of the Nash equilib-
rium, as Roger Myerson has pointed out, is essentially the most general
formulation of that assumption. Nash formally defined equilibrium of
a non-cooperative game to be “a configuration of strategies, such that
no player acting on his own can change his strategy to achieve a better
outcome for himself.” The outcome of such a game must be a Nash
equilibrium if it is to conform to the assumption of rational individual
behavior. That is, if the predicted behavior doesn’t satisfy the condition
for Nash equilibrium, then there must be at least one individual who
could achieve a better outcome if she were simply made aware of her
own best interests.

In one sense, Nash made game theory relevant to economics by
freeing it from the constraints of von Neumann and Morgenstern’s two-
person, zero-sum theory. By the time he was writing his thesis, even the
strategists at RAND had come to doubt that nuclear warfare, much less
post-war reconstruction, could usefully be modeled as a game in which

xviii

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu



the enemy’s loss was a pure gain for the other side. Nash had the critical
insight that most social interactions involve neither pure competition
nor pure cooperation but rather a mix of both.

From a perspective of half a century later, Nash did much more
than that. After Nash, the calculus of rational choice could be applied
to situations beyond the market itself to analyze the system of incen-
tives created by any social institution. Myerson’s eloquent assessment of
Nash’s influence on economics is worth quoting at length:

Before Nash, price theory was the one general methodology avail-
able to economics. The power of price theory enabled economists
to serve as highly valued guides in practical policy making to a
degree that was not approached by scholars in any other social
science. But even within the traditional scope of economics, price
theory has serious limits. Bargaining situations where individu-
als have different information . . . the internal organization of a
firm . . . the defects of a command economy . . . crime and cor-
ruption that undermine property rights. . . .

The broader analytical perspective of non-cooperative game
theory has liberated practical economic analysis from these
methodological restrictions. Methodological limitations no longer
deter us from considering market and non-market systems on an
equal footing, and from recognizing the essential interconnections
between economic, social, and political institutions in economic
development. . . .

By accepting non-cooperative game theory as a core analyt-
ical methodology alongside price theory, economic analysis has
returned to the breadth of vision that characterized the ancient
Greek social philosophers who gave economics its name.*

Von Neumann, however, didn’t think much of Nash’s breakthrough.
When Nash met with him, the Hungarian polymath dismissed the
younger man’s result as “trivial.” The 1953 edition of his and Morgen-
stern’s Theory of Games and Economic Behavior included only a perfunc-
tory mention of “non-cooperative games” in the Preface.

* Myerson 1999.
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His doctorate in his pocket, Nash headed off to RAND, the ultra-
secret cold war think tank, in the summer of 1950. He would be

part of “the Air Force’s big-brain-buying venture”—whose stars would
eventually serve as models for Dr. Strangelove—for the next four years,
spending every other summer in Santa Monica.

Game theory was considered RAND’s secret weapon in a nuclear
war of wits against the Soviet Union. “We hope [the theory of games]
will work, just as we hoped in 1942 that the atomic bomb would work,”
a Pentagon official told Fortune at the time. Nash got an excited recep-
tion. Researchers like Kenneth Arrow, who won a Nobel for his social
choice theory, were already chafing at RAND’s “preoccupation with the
two-person zero-sum game.” As weapons became ever more destructive,
all-out war could not be seen as a situation of pure conflict in which op-
ponents shared no common interests. Nash’s model thus seemed more
promising than von Neumann’s.

Probably the single most important work Nash did at RAND in-
volved an experiment. Designed with a team that included Milnor and
published as “Some Experimental n-Person Games,” it anticipated by
several decades the now-thriving field of experimental economics. At the
time the experiment was regarded as a failure, Alvin Roth has pointed
out, casting doubt on the predictive power of game theory. But it later
became a model because it drew attention to two aspects of interaction.
First, it highlighted the importance of information possessed by partic-
ipants. Second, it revealed that players’ decisions were, more often than
not, motivated by concerns about fairness. Despite the experiment’s sim-
plicity, it showed that watching how people actually play a game drew
researchers’ attention to elements of interaction—such as signaling and
implied threats—that weren’t part of the original model.

Nash, whose own interests were rapidly shifting away from game
theory to pure mathematics, became fascinated with computers at
RAND. Of the dozen or so working papers he wrote during his summers
in Santa Monica, none is more visionary than one, written in his last
summer at the think tank, called “Parallel Control” (see chapter 9).

Nash, however, was bent on proving himself a pure mathematician.
Even before completing his thesis on game theory, he turned his
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attention to the trendy topic of geometric objects called manifolds.
Manifolds play a role in many physical problems, including cosmology.
Right off the bat, he made what he called “a nice discovery relating
to manifolds and real algebraic varieties.” Hoping for an appointment
at Princeton or another prestigious math department, he returned to
Princeton for a post-doctoral year and devoted himself to working out
the details of the difficult proof.

Many breakthroughs in mathematics come from seeing unsus-
pected connections between objects that appear intractable and ones
that mathematicians have already got their arms around. Dismissing
conventional wisdom, Nash argued that manifolds were closely related
to a simpler class of objects called algebraic varieties. Loosely speak-
ing, Nash asserted that for any manifold it was possible to find an al-
gebraic variety one of whose parts corresponded in some essential way
to the original object. To do this, he showed, one has to go to higher
dimensions.

Nash’s theorem was initially greeted with skepticism. Experts found
the notion that every manifold could be described by a system of poly-
nomial equations implausible. “I didn’t think he would get anywhere,”
said his Princeton adviser.

Nash completed “Real Algebraic Manifolds,” his favorite paper and
the only one he concedes is nearly perfect, in the fall of 1951 (see
chapter 10). Its significance was instantly recognized. “Just to conceive
the theorem was remarkable,” said Michael Artin, a mathematician at
MIT. Artin and Barry Mazur, who was a student of Nash’s at MIT, later
used Nash’s result to resolve a basic problem in dynamics, the estimation
of periodic points. Artin and Mazur proved that any smooth map from
a compact manifold to itself could be approximated by a smooth map
such that the number of periodic points of period p grows at most
exponentially with p. The proof relied on Nash’s work by translating
the dynamic problem into an algebraic one of counting solutions to
polynomial equations.

Nonetheless, Nash’s hoped-for appointment at Princeton did not
materialize. Instead, he got an offer at MIT, then still the nation’s leading
engineering school but not the great research university that it was to
become.
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In 1955, Nash unveiled a stunning result to a disbelieving audience at
the University of Chicago. “I did this because of a bet,” he announced.

One of his colleagues at MIT had, two years earlier, challenged him.
“If you’re so good, why don’t you solve the embedding problem . . . ?”
When Nash took up the challenge and announced that “he had solved
it, modulo details,” the consensus around Cambridge was that “he is
getting nowhere.”

The precise question that Nash was posing—“Is it possible to embed
any Riemannian manifold in a Euclidian space?”—was a challenge that
had frustrated the efforts of eminent mathematicians for three-quarters
of a century.

By the early 1950s, interest had shifted to geometric objects in
higher dimensions, partly because of the large role played by distorted-
time and space relationships in Einstein’s theory of relativity. Embed-
ding means presenting a given geometric object as a subset of a space
of possibly higher dimension, while preserving its essential topologi-
cal properties. Take, for instance, the surface of a balloon, which is
two-dimensional. You cannot put it on a blackboard, which is two-
dimensional, but you can make it a subset of a space of three or more
dimensions.

John Conway, the Princeton mathematician who discovered surreal
numbers, calls Nash’s result “one of the most important pieces of math-
ematical analysis in this century.” Nash’s theorem stated that any kind of
surface that embodied a special notion of smoothness could actually be
embedded in a Euclidean space. He showed, essentially, that you could
fold a manifold like a handkerchief without distorting it. Nobody would
have expected Nash’s theorem to be true. In fact, most people who heard
the result for the first time couldn’t believe it. “It took enormous courage
to attack these problems,” said Paul Cohen, a mathematician who knew
Nash at MIT.

After the publication of “The Imbedding Problem for Riemannian
Manifolds” in the Annals ofMathematics (see chapter 11), the earlier per-
spective on partial differential equations was completely altered. “Many
of us have the power to develop existing ideas,” said Mikhail Gromov,
a geometer whose work was influenced by Nash. “We follow paths pre-
pared by others. But most of us could never produce anything compa-
rable to what Nash produced. It’s like lightening striking . . . there has

xxii

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu



been some tendency in recent decades to move from harmony to chaos.
Nash said that chaos was just around the corner.”

Nominally attached to the Institute for Advanced Study during a
leave from MIT in the academic year 1956–57, Nash instead

gravitated to the Courant Institute at New York University, “the national
capital of applied mathematical analysis.”

At Courant, then housed in a former hat factory off Washington
Square in Greenwich Village, a group of young mathematicians was re-
sponsible for the rapid progress stimulated by World War II in the field
of partial differential equations. Such equations were useful in mod-
eling a wide variety of physical phenomena, from air passing under
the wings of a jet to heat passing through metal. By the mid-1950s,
mathematicians knew simple routines for solving ordinary differential
equations using computers. But straightforward methods for solving
most nonlinear partial differential equations—the kind potentially use-
ful for describing large or abrupt changes—did not exist. Stanislaw
Ulam complained that such systems of equations were “baffling ana-
lytically,” noting that they defied “even qualitative insights by present
methods.”

Nash proved basic local existence, uniqueness, and continuity the-
orems (and also speculated about relations with statistical mechanics,
singularities, and turbulence.) He used novel methods of his own inven-
tion. He had a theory that deep problems wouldn’t yield to a frontal at-
tack. Taking an ingeniously roundabout approach, he first transformed
the non-linear equations into linear ones and then attacked them with
non-linear means. Today rocket scientists on Wall Street use Nash-
inspired methods for solving a particular class of parabolic partial dif-
ferential equations that arise in finance problems.

When he returned to MIT the following fall, there were still gaps
in the proof. “It was as if he was a composer and could hear the music,
but he didn’t know how to write it down.” Nash organized a cadre of
mathematicians to help him get the paper ready for publication. “It
was like building the atom bomb . . . a kind of factory,” said one of
them later. The complete proof was published in 1958 in “Continuity
of Solutions of Parabolic and Elliptic Equations” (see chapter 12).
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As Nash’s thirtieth birthday approached, he seemed poised to make
more groundbreaking contributions. He told colleagues of “an

idea of an idea” about a possible solution to the Riemann hypothesis, the
deepest puzzle in all of mathematics. He set out “to revise quantum the-
ory,” along lines he had once, as a first-year graduate student, described
to Einstein. Writing to Oppenheimer in 1957, Nash had said, “To me
one of the best things about the Heisenberg paper is its restriction to
observable quantities . . . I want to find a different and more satisfying
under-picture of a non-observable reality.”

Later, he blamed the onset of his terrible disease on intellectual over-
reaching. No one can know what he might have accomplished had full-
blown schizophrenia not set in. In the event, despite the ravages of his
illness, he did go on to publish several more papers. “Le problème de
Cauchy pour les équations différentielles d’une fluide générale,” which
appeared in 1962, is described as “basic and noteworthy” in The Ency-
clopedic Dictionary of Mathematics and inspired a good deal of subse-
quent work by others. He continued to tackle new subjects. Hironaka
eventually wrote up one of his conjectures, dating from 1964, as “Nash
Blowing Up.” In 1966, he published “Analyticity of Solutions of Im-
plicit Function Problems with Analytic Data,” which pursued his ideas
about partial differential equations to their natural conclusion. And in
1967 he completed a much-cited draft, “Arc Structure of Singularities,”
that was eventually published in a 1995 special issue of the Duke Journal
of Mathematics.

“If you’re going to develop exceptional ideas, it requires a type of
thinking that is not simply practical thinking,” Nash told a reporter
recently. When Nash won the Nobel in 1994, he was not invited to
deliver the customary hour-long Nobel lecture in Stockholm. He did,
however, give a talk in Uppsala just after the Nobel ceremonies about
his recent attempt to develop a mathematically correct theory of a non-
expanding universe that is consistent with known physical observations.
More recently, Nash has been working on game theory again. He has
received a grant from the National Science Foundation to develop a new
“evolutionary” solution concept for cooperative games. To get your life
back is a marvelous thing, he has said. But to be able to create exciting
new mathematics is now, as ever, his greatest ambition.
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