
Preface

One of the greatest beauties in mathematics is how the same equations can de-
scribe phenomena in widely different fields. Benford’s Law of digit bias is an
outstanding example of this. Briefly, it asserts that for many natural data sets we
are more likely to see numbers with small leading digits than large ones. More
precisely, our system is Benford if the probability of a first digit ofd is log10

d+1
d ;

we often consider the related but stronger statement that the probability of a sig-
nificand being at mosts is log10 s, or the natural generalizations to other number
bases. Base 10, the probabilities range from having a leading digit of 1 almost 30%
of the time, to only about a 4.6% chance of starting with a 9.

Benford’s Law arises in a variety of disciplines, including accounting, computer
science, dynamical systems, economics, engineering, medicine, number theory,
probability, psychology and statistics, to name just a few, and provides a won-
derful opportunity for a common meeting ground for people with diverse interests
and backgrounds. My first encounter with it was in Serre’sA Course in Arithmetic
[Ser]. On page 76 he remarks that Bombieri showed him a proof that the analytic
density of the set of primes with leading digit 1 islog10 2, which is the Benford
probability; a short argument using Poisson Summation yields the proof. I next
saw it in Knuth’sThe Art of Computer Programming, Volume 2: Seminumerical
Algorithms([Knu], page 255), where he discusses applications of Benford’s Law
to analyzing floating point operations, especially the fact that Benford behavior im-
plies the relative error from rounding is typically higher than one would expect.
Once aware (or perhaps I should say doubly aware) of its existence, I saw it more
and more often.

Our purposes here are to show students and researchers useful techniques from
a variety of subjects, highlight the connections between the different areas and en-
courage research and cross-departmental collaboration on these problems. To do
this, we develop much of the general theory in the first few chapters (concentrat-
ing on the methods which are applicable to a variety of problems), and then con-
clude with numerous chapters on applications written by world-experts in that field.
Though there are common themes and methods throughout the applications, these
chapters are self-contained, needing only the introductory chapters and some stan-
dard material.For those wishing to use this as a textbook, numerous exercises
and supplemental material are collected in the final chapter, and additionally
are posted online (where more problems can easily be added, and links to rel-
evant material for that chapter are collected); see
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http://web.williams.edu/Mathematics/sjmiller/public html/benford/ .

One advantage of posting problems online is that this need not be a static list, and
thus please feel free to email suggestions for additional exercises.

Below we briefly outline the major themes of the book.

• Part I: General Theory I: Basis of Benford’s Law: We begin our study of
Benford’s Law with a brief introduction by Miller in Chapter 1. We concen-
trate on the history and some possible explanations, and briefly discuss a few
of the many applications and central questions in the field.

While for many readers this level of depth suffices, the subject can (and
should!) be built on firm foundations. We do this in Chapter 2, where
Berger and Hill rigorously derive many results through the use of appro-
priateσ-algebras. There are many approaches to proving a system satisfies
Benford’s Law. One of the most important is the Fundamental Equivalence
(also called the uniform distribution characterization), which says a system
{xn} satisfies Benford’s Law baseB if and only if its logarithm modulo 1
(i.e., yn = logB xn mod 1) is uniformly distributed. In other words, in the
limit, the probability the logarithm modulo 1 lies in a subinterval[a, b] of
[0, 1] is just b − a. The authors describe this and additional characteriza-
tions of Benford’s Law (including the scale-invariance characterization and
the base-invariance characterization), and prove many deterministic and ran-
dom processes satisfy Benford’s Law, as well as discussing flaws of other
proposed explanations (such as the spread distribution approach).

For the uniform distribution characterization to be useful, however, we need
ways to show these logarithms are uniformly distributed. Often techniques
from Fourier analysis are well suited for such an analysis. The Fundamen-
tal Equivalence reduces the Benfordness of{xn} to the distribution of the
fractional parts of its logarithms{yn}. Fourier analysis is built on the func-
tionsem(t) := exp(2πimt) (wherei =

√
−1); note that the painful mod-

ulo condition inyn vanishes when it is the argument ofem, asem(yn) =
em(yn mod 1). Chapter 3 by Miller is devoted to developing Fourier ana-
lytic techniques to prove Benford behavior. We demonstrate the power of
this machinery by applying it to a variety of problems, including products
and chains of random variables,L-functions, special densities and the infa-
mous3x+ 1 problem. For example, using techniques from Fourier analysis
(especially Poisson Summation), one can show that the standard exponential
random variable is very close to satisfying Benford’s Law. The exponential
is a special case of the three-parameter Weibull distribution. A similar anal-
ysis shows that, so long as the shape exponent of the Weibull is not too large,
it too is close to being Benford. There are numerous applications of these re-
sults. The closeness of the standard exponential to Benford implies that order
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statistics are almost Benford as well. The Weibull distribution arises in many
survival models, and thus the analysis here provides another explanation of
the prevalence of Benford behavior in many diverse systems.

• Part II: General Theory II: Distributions and Rates of Convergence:
Combinations of data sets or random variables are often closer to satisfying
Benford’s Law than the individual data sets or distributions. This suggests
a natural problem: looking for distributions that are exactly or at least close
to being Benford. One of the most important examples of a distribution that
exhibits Benford behavior is that of a geometric random variable. Numerous
phenomena obey a geometric growth law; in particular, the solution to almost
any linear difference equations is a linear combination of geometric series.
We then investigate other important distributions and see how close they are
to Benford. Although Benford’s Law applies to a wide variety of data sets,
none of the popular parametric distributions, such as the exponential and
normal distributions, conforms exactly. Chapter 4 highlights the failure of
several well-known probability distributions, then delves into the geometry
associated with probability distributions that obey Benford’s Law exactly.
The starting point of these constructions is the fact that ifU is a uniform
random variable on[a, a + n] for some integern, thenT = 10U is Benford
base 10.

As the exponential and Weibull distributions are not exactly Benford, it is
important to obtain estimates on the size of the deviations. There are many
ways to obtain such bounds. In Chapter 3 these bounds were obtained from
Poisson Summation and the Fourier transform; in Chapter 5 Dümbgen and
Leuenberger derive bounds from the total variation of the density (and its
derivatives). These results are applied to numerous distributions, such as
exponential, normal and Weibull random variables.

This part concludes with Chapter 6 by Schürger. Earlier in the book we
showed geometric Brownian motions are Benford. While processes such as
the stock market were initially modeled by Brownian motions, such models
have several defects, and current work must incorporate jumps and heavy
tails. This leads to the study of Lévy Processes. These processes are de-
scribed in detail, and their convergence to Benford behavior is shown. The
techniques required are similar to those for geometric Brownian motion. On
the other hand, the class of Lévy processes is much more general than just
geometric Brownian motion, with applications in stochastic processes and fi-
nance; in particular, these and related processes model financial data, which
has long been known to closely follow Benford’s Law.

The final parts of this book deal with just some of the many applications of Ben-
ford’s Law. Due to space constraints it is impossible to discuss all of the places
Benford’s Law appears. We have therefore chosen to focus on just a few situa-
tions, going for depth over breadth. We encourage the reader to peruse the many
resources, such as the searchable online bibliography at [BerH2] or the large com-
pilation [Hu], for a tour through additional areas to explore.
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• Part III: Applications I: Accounting and Vote Fraud: Though initially
an amusing observation about the distribution of digits in various data sets,
since then Benford’s Law has found numerous applications in many diverse
fields. We briefly survey some of these. Probably the most famous applica-
tion is to detecting tax fraud, though of course it is fruitfully used elsewhere
too. We start in Chapter 7 with some of the basics of accounting, where
Cleary and Thibodeau describe how Benford’s Law can be integrated into
business statistics and accounting courses. In particular, in the American Sta-
tistical Association’s 2005 reportGuidelines for Assessment and Instruction
in Statistics Education, the following four goals (among others) are listed for
what students should know after a first statistics course: (1) that variability is
natural, predictable and quantifiable; (2) that random sampling allows results
of surveys and experiments to be extended to the population from which the
sample was taken; (3) how to interpret statistical results in context; (4) how
to critique news stories and journal articles that include statistical informa-
tion, including identifying what’s missing in the presentation and the flaws
in the studies or methods used to generate the information. The rest of the
chapter shows how incorporating Benford’s Law realizes these objectives.

Chapter 8 by Nigrini describes one of the most important applications of Ben-
ford’s Law: detecting fraud. Many diverse systems approximately obey the
law, and thus deviations often indicate fraud. The chapter begins by examin-
ing some data sets that follow the law (tax returns, the 2000 census, stream
flow data and accounts payable data), and concludes by showing how Ben-
ford’s Law successfully detected fraud in accounts payable amounts, payroll
data and corporate numbers (such as Enron).

We continue with another important example where Benford’s Law has suc-
cessfully detected fraud. Chapters 9 by Mebane and 10 by Roukema discuss
how Benford’s Law can detect vote fraud; the first chapter develops tests
based on the second digit and explores its use in practice, while the sec-
ond concentrates on a recent Iranian election whose official vote counts were
claimed to be invalid. .

• Part IV: Applications II: Economics: While there is no dearth of interest-
ing topics to explore, we have chosen to devote this part of the book to eco-
nomics because of the huge impact of recent events. A spectacular example
of this is given by European Union (EU) policy, and the situation in Greece.
We begin in Chapter 11 by Rauch, Göttsche, Brähler and Engel with a de-
scription of EU practices and data from several countries. As the stakes are
high, there is enormous pressure to misreport statistics to avoid being hit with
EU deficit procedures. We continue in Chapter 12 by Tödter with additional
analysis, especially of published economics research papers. A surprisingly
large proportion of first digits of regression coefficients and standard errors
violate Benford’s Law, in contrast to second digits. Routine applications of
Benford tests would increase the efficiency of replication exercises and raise
the risk of scientific misconduct. Another issue discussed is fitting data to
a Generalized Benford Law, a topic Lee, Cho and Judge address in Chapter
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17; both of these chapters deal with the issues facing the public arising from
researchers falsifying data. We conclude this part with an analysis of data
from the U.S. financial sector. The main finding is that Benford’s Law fits
the data from before the housing crisis well, but not the data afterwards.

• Part V: Applications III: Sciences: In previous chapters we discussed which
distributions fit (and which don’t fit) Benford’s Law, as well as tests to detect
fraud. In this part we take a different approach, and explore the psychology
behind the people generating numbers. Chapters 14 by Burns and Krygier
and 15 by Chou, Kong, Teo and Zheng explore patterns and tendencies in
number generation, and the resulting implications, followed by Hoyle’s chap-
ter on the prevalence of Benford’s Law in the natural sciences, including a
summary of its occurrences and a discussion of the consequences. We end
in Chapter 17 by Lee, Cho and Judge with a nice mix of theory and applica-
tion. The authors consider a generalization of Benford’s Law, developing the
theory and analyzing known cases of fraud. They study the related Stigler
distribution, and describe how it may be found from information-theoretic
methods. This leads to alternative digit distributions based on maximum en-
tropy principles. The chapter ends by using these new distributions in an
analysis of some medical data which was known to be falsified, where the
falsified data is detected. An important application of the material of this
part is in developing tests to detect whether researchers are submitting fraud-
ulent data. Similar to the chapters from economics, as the costs to society
from incorrectly adopting conclusions of faulty research can be high, these
tests provide a valuable tool to check the veracity of claims.

• Part VI: Applications IV: Images: Our final part deals with whether or not
images follow Benford’s Law. Chiverton and Wells, in Chapter 18, explore
the relationship between intensities in medical images and Benford behav-
ior. They describe a simple classifier based on Bayes theory which uses the
Benford Partial Volume (PV) distribution as a prior; the results show exper-
imentally that the Benford PV distribution is a reasonable modeling tool for
the classification of imaging data affected by the PV artifact. The fraud-based
applications of Benford’s Law have grown from financial data sets to others
as well. The last chapter, Chapter 19 by Pérez-González, Quach, Abdal-
lah, Heileman and Miller, explores whether or not Benford’s Law can detect
modifications in images. Specifically, while images in the pixel domain are
not close to Benford, the result after applying the Discrete Cosine Transform
is. These results can be used to look for hidden messages in pictures, as well
as to test whether or not the image has been compressed.

We are extremely grateful to Princeton University Press, especially to our editor
Vickie Kearn and to Betsy Blumenthal and Jill Harris, for all their help and aid, to
our copyeditor Alison Durham who did a terrific job, especially in standardizing
the exposition across chapters, to Meghan Kanabay for assistance with many of
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the illustrations, and Amanda Weiss for help with the jacket design. Many people
proofread the book, looking not just for grammatical issues but also making sure it
was a coherent whole with widely accessible expositions; it is a pleasure to thank
them, especially John Bihn and Jaclyn Porfilio.

The editor was partially supported by NSF Grants DMS0600848, DMS0970067
and DMS1265673; some of his students assisting with the project were supported
by NSF Grants DMS0850577 and DMS1347804, the Clare Boothe Luce Program,
and Williams College. Some of this book is based on a conference organized by
Chaouki T. Abdallah, Gregory L. Heileman, Steven J. Miller and Fernando Pérez-
Gonźalez and assisted by Ted Hill:Conference on the Theory and Applications
of Benford’s Law(16–18 December 2007, Santa Fe, NM). This conference was
supported in part by Brown University, IEEE, NSF Grant DMS-0753043, the New
Mexico Consortium’s Institute for Advanced Study, Universidade de Vigo and the
University of New Mexico, and it is a pleasure to thank them and the participants.
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