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Chapter One

Buildings

We use this chapter to assemble a few standard definitions, fix some notation
and review a few of the results about buildings and Moufang polygons which
will be used most frequently in these notes.
A summary of the basic facts about Coxeter groups and buildings with

which we expect the reader to have some familiarity can be found, with
references to proofs, in [65, 29.1-29.15]. These include the basic properties of
roots, residues, apartments and projection maps. (We emphasize, however,
that although we assume some familiarity with this background material, we
have made every effort throughout these notes to include explicit references
to the results in [60], [62], [65] and elsewhere each time they are applied.)
When we refer to the type of a building ∆, we mean either the corre-

sponding Coxeter diagram or, equivalently, the corresponding Coxeter sys-
tem (W,S); see 19.2. The cardinality |S|, which we always assume to be
finite, is called the rank of ∆. More generally, the rank of a J-residue of ∆
is |J | for each subset J of S.
Root groups and the Moufang condition play a central role in this mono-

graph. A root of a building is a root of one of its apartments. For a given
root α of a building ∆, the corresponding root group Uα is the subgroup of
Aut(∆) consisting of all elements that act trivially on each panel containing
two chambers of α.

Definition 1.1. As in [62, 11.7], we say that a building ∆ is Moufang (or
satisfies the Moufang condition) if

(i) it is thick, irreducible and spherical as defined in [62, 1.6 and 7.10];

(ii) its rank is at least 2; and

(iii) for every root α, the root group Uα acts transitively on the set of all
apartments containing α.

We emphasize that if we say that a building is Moufang, we are implying that
it is spherical, thick, irreducible and of rank at least 2. Nevertheless, when
we say that a building is Moufang, we will sometimes also say explicitly that
the building is spherical just to avoid any possible confusion. (In Chapter 24
we introduce the more general notion of a Moufang structure on a spherical
building. See also [1, 8.3] and [44, Chapter 6, §4, and Chapter 11, §7] for
other notions of a Moufang building. These other notions will not play any
role in these notes.)
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Definition 1.2. Let ∆ be a building, let R be a residue of ∆ and let c be
an arbitrary chamber of ∆. By [62, 8.21], there is a unique chamber z in R
nearest c and

(1.3) dist(x, c) = dist(x, z) + dist(z, c)

for every chamber x ∈ R. This unique nearest chamber z is called the projec-
tion of c to R and is denoted by projR(c). The projection map projR : ∆ → R
will play an important role in these notes starting in Chapter 21.

Remark 1.4. A fundamental result of Tits says that an irreducible thick
spherical building of rank at least 3 satisfies the Moufang condition as do
all the irreducible residues of rank at least 2 of such a building. For a proof,
see [62, 11.6 and 11.8].

Moufang sets.

A building of type A1—in other words, a building of rank 1—is only a set of
cardinality at least 2 without any further structure, but the buildings of type
A1 we will encounter come endowed with a group of permutations having
special properties which led to the following definition introduced by Tits in
[58]:

Definition 1.5. A Moufang set is a pair (X, {Ux | x ∈ X}), where X is a
set with |X | ≥ 3 and for each x ∈ X , Ux is a subgroup of Sym(X) (where
we compose from right to left) such that the following hold:

(i) For each x ∈ X , Ux fixes x and acts sharply transitively on X\{x}.
(ii) For all x, y ∈ X and each g ∈ Ux, gUyg

−1 = Ug(y).

The groups Ux for x ∈ X are called the root groups of the Moufang set.

Definition 1.6. Let M = (X, {Ux | x ∈ X}) be a Moufang set and let

G = 〈Ux | x ∈ X〉.
By 1.5(i), the groupG acts 2-transitively onX and by 1.5(ii), the root groups
are all conjugate to each other in G. Let x, y be distinct elements of X . For
each g ∈ U∗

x := Ux\{1}, there exist a unique element µxy(g) in the double
coset

UygUy

that interchanges x and y. Thus µ := µxy is a map from U∗
x to G which

depends on the choice of x and y. By [19, 3.1(ii)], the stabilizer Gxy is
generated by the set

{µ(g1)µ(g2) | g1, g2 ∈ Ux}.
Since Ux acts sharply transitively on X\{x}, the subgroup Gxy is isomorphic
to the subgroup of Aut(Ux) it induces. The tori of M are the conjugates in G
of the subgroup Gxy. Since G acts 2-transitively on X , the tori are precisely
the 2-point stabilizers in G.
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Definition 1.7. Two Moufang sets

(X, {Ux | x ∈ X}) and (X ′, {Ux | x ∈ X ′})
are isomorphic if there exists a bijection from X to X ′ that transports root
groups to root groups (and such a bijection is called an isomorphism).

Definition 1.8. Let

M = (X, {Ux | x ∈ X}) and M′ = (X ′, {Ux | x ∈ X ′})
be two Moufang sets and let x, y be an ordered pair of distinct elements of
X . An xy-isomorphism from M to M′ is a bijection ψ from X to X ′ inducing
an isomorphism ϕ from Ux to U ′

ψ(x) such that

(1.9) ϕ(uµ(a)µ(b)) = ϕ(u)µ
′(ϕ(a))µ′(ϕ(b))

for all u ∈ Ux and all a, b ∈ U∗
x , where µ = µxy and µ′ = µϕ(x)ϕ(y) are as in

1.6 with respect to M, respectively, M′. If x1, y1 is another ordered pair of
distinct elements of X , then there is an element g in the group G defined in
1.6 mapping the ordered pair x, y to the ordered pair x1, y1 and the compo-
sition of g with an xy-isomorphism from M to M′ is an x1y1-isomorphism
from M to M′. We will say that M and M′ are weakly isomorphic (and
write M ≈ M′) if there is an xy-isomorphism from M to M′ for some choice
of x, y in X (and hence for all choices of x, y in X), and we define a weak
isomorphism from M to M′ to be an xy-isomorphism for some choice of x, y
in X . The inverse of a weak isomorphism is a weak isomorphism as is the
composition of two weak isomorphisms, and every isomorphism of Moufang
sets is also a weak isomorphism.

Remark 1.10. Let M, M′, etc., be as in 1.8, let x, y be an ordered pair of
distinct elements of X , let x′, y′ be an ordered pair of distinct elements of
X ′ and suppose that ϕ is an isomorphism from Ux to U ′

x′ such that (1.9)
holds for all u ∈ Ux and all a, b ∈ U∗

x with µ = µxy and µ′ = µx′y′ . Then the
map ψ from X to X ′ which sends x to x′ and yu to (y′)ϕ(u) for all u ∈ Ux
is an xy-isomorphism from M to M′.

Notation 1.11. Let M = (X, {Ux | x ∈ X}) be a Moufang set, choose
distinct points x, y in X , let µ = µxy be the map from U∗

x to Aut(M) defined
in 1.6, choose a ∈ U∗

x and let m = µ(a). There exists a unique permutation
ρ of U∗

x such that

yu
ρ

= xm
−1um

for all u ∈ U∗
x . Therefore

(1.12) yu
ρ

= (yu)m

for all u ∈ U∗
x since m interchanges x and y. We identify Ux with the

set X\{x} via the map u 7→ yu, then we identify ρ with the permutation
yu 7→ yu

ρ

of X\{x, y} and finally we extend ρ to a permutation of X by
declaring that it interchanges x and y. Given these identifications, it follows
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from (1.12) that the permutations m and ρ of X are the same. In particular
〈Ux, ρ〉 = 〈Ux, Uy〉. Since this group acts transitively on X , it acts transi-
tively on the set of root groups {Uz | z ∈ X}. It follows that M is uniquely
determined by Ux and ρ (although ρ, of course, depends on the choice of a).
We can thus set

(1.13) M = M(Ux, ρ).

This is the point of view taken in [17] and [19].

See 3.9 for examples of various families of Moufang sets described in terms
of a single root group and a permutation of its non-trivial elements as in 1.11.

Moufang polygons and root group sequences.

A generalized n-gon (for n ≥ 2) is a building of type

• •n
.............................................................

and a generalized polygon is a generalized n-gon for some n. See [62, 7.14 and
7.15] for an equivalent definition in terms of bipartite graphs. The classifica-
tion of generalized n-gons satisfying the Moufang conditions (i.e. of Moufang
polygons) was carried out in [60]. Moufang n-gons exist, in particular, only
for n = 3, 4, 6 and 8. The classification says that each Moufang n-gon is
uniquely determined by a root group sequence Ω as defined in [60, 8.7], and
these root group sequences are, in turn, determined by certain algebraic data
and isomorphisms x1, . . . , xn from this algebra data to the root groups from
which Ω is composed according to one of the nine recipes [60, 16.1–16.9].

Notation 1.14. In accordance with [65, 30.8], we will use the following
names for the root group sequences obtained by applying the recipes [60,
16.1–16.9]:

(i) T (K), where K is a field or a skew field or an octonion division algebra
as defined in [60, 9.11].

(ii) QI(Λ), where Λ = (K,K0, σ) is an involutory set as defined in [60,
11.1].

(iii) QQ(Λ), where Λ = (K,L, q) is a non-trivial anisotropic quadratic space
as defined in 2.1 (see 2.14).

(iv) QD(Λ), where Λ = (K,K0, L0) is an indifferent set as defined in [60,
10.1].

(v) QP(Λ), where Λ = (K,K0, σ, L, q) is an anisotropic pseudo-quadratic
space as defined in [60, 11.17].

(vi) QE(Λ), where Λ = (K,L, q) is a quadratic space of type E6, E7 or E8

as defined in 8.1.
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(vii) QF (Λ), where Λ = (K,L, q) is a quadratic space of type F4 as defined
in 9.1.

(viii) H(Λ), where Λ = (J, F,#) is an hexagonal system as defined in [60,
15.15].

(ix) O(Λ), where Λ = (K,σ) is an octagonal system as defined in [60, 10.11].

Notation 1.15. We will say that a root group sequence is of of type T if
it is isomorphic to a root group sequence in case (i) of 1.14, of type QI or
of involutory type if it is isomorphic to a root group sequence in case (ii), of
type QQ or of quadratic form type if it is isomorphic to a root group sequence
in case (iii), etc.

Among all the Moufang polygons, the exceptional Moufang quadrangles—
those corresponding to a root group sequence of type QE or QF —are the
most extraordinary. They will be the focus of our attention in Parts 2 and 5
of this monograph.
Let c be a chamber of a Moufang spherical building ∆ and let E2(c)

denote the subgraph spanned by all the irreducible rank 2 residues of ∆.
Another fundamental result of Tits ([62, 10.16]) says that ∆ is uniquely
determined by E2(c). The irreducible rank 2 residues containing c, which
are in one-to-one correspondence with the edges of the Coxeter diagram of
∆, are Moufang polygons. Thus each of these residues is determined by
a root group sequence. This leads to the notion of a root group labeling
of the Coxeter diagram Π. In a root group labeling, the edges of Π are
decorated with root group sequences and the vertices with isomorphisms
identifying certain root groups of the root group sequences decorating the
different adjacent edges. A description of the results of Tits’ classification
of Moufang spherical buildings in terms of root group labelings is given in
[65, 30.14]. In these notes we will apply the corresponding notation for these
buildings as given in [65, 30.15]. Thus, in particular:

Remark 1.16. In the notion in [65, 30.15], the Moufang quadrangles corre-
sponding to the first eight cases of 1.14 are, in order, called: A2(K), BI

2 (Λ)
or CI

2 (Λ), B
Q
2 (Λ) or CQ

2 (Λ), B
D
2 (Λ) or CD

2 (Λ), B
P
2 (Λ) or CP

2 (Λ), B
E
2 (Λ) or

CE
2 (Λ), B

F
2 (Λ) or C

F
2 (Λ), and G2(Λ).

Remark 1.17. Let Ω′ be a subsequence of a root group sequence Ω as
defined in [60, 8.17]. By [60, 7.4 and 8.1], the generalized polygon asso-
ciated with Ω′ is a subbuilding of the generalized polygon associated with
Ω. Suppose, for example, that Λ′ = (F,A,B) is an indifferent set. Then
Λ := (F, F, F ) is an indifferent set containing Λ′ canonically as a “sub”-
indifferent set and by [60, 8.12] and the formulas in [60, 32.8], QD(Λ

′) is a
subsequence of the root group sequence QD(Λ). Hence B

D
2 (Λ

′) is a subbuild-
ing of BD

2 (Λ). As a second example, let Λ be the involutory set (E,F, σ),
where E/F is a separable quadratic extension and σ is the non-trivial ele-
ment of Gal(E/F ). Then Λ′ := (F, F, idF ) is canonically a “sub”-involutory
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set of Λ and by the formulas in [60, 32.6 and 32.9] QI(Λ
′) is a subsequence

of the root group sequence QI(Λ). Hence BI
2 (Λ

′) is a subbuilding of BI
2 (Λ).

It follows from [65, 30.16] that BI
ℓ (Λ

′) is, in fact, a subbuilding of BI
ℓ (Λ) for

all ℓ ≥ 3.

Notation 1.18. Let ∆ be a Moufang spherical building, let Σ be an apart-
ment of ∆, let Υ = ΥΣ be the set of all roots of Σ and let G = Aut(∆). We
denote by G† the subgroup of G generated by all the root groups of ∆. By
[62, 11.22], there exists a map

µΣ :
⋃

α∈Υ

U∗
α → G†

such that for each α ∈ Υ and for each non-trivial element g in the root group
Uα, µΣ(g) is the unique element in the double coset

U−αgU−α

which maps Σ to itself. Here −α denotes the root of Σ opposite α (i.e. the
complement of α in Σ regarded as a set of chambers). The wall of α is the
set of all panels of ∆ containing one chamber in α and one in −α. If α ∈ Υ,
then by [62, 3.13], there is a unique automorphism sα of Σ that stabilizes
every panel in the wall of α and interchanges α with −α. We have sα = s−α
and s2α = 1 for all α ∈ Υ. A reflection of Σ is an automorphism of the form
sα for some α ∈ Υ. For each α ∈ Υ and each g ∈ U∗

α, the element µΣ(g)
induces sα on Σ (but is not necessarily of order 2). See 19.15 below.

Notation 1.19. Let ∆ and G† be as in 1.18, let P be a panel of ∆ and
let GP be the stabilizer of P in G†. We choose a chamber x in P and an
apartment Σ containing x and let α denote the unique root of Σ containing
x but not P ∩ Σ. By [62, 11.4], the root group Uα acts sharply transitively
and, in particular, faithfully on P\{x}. Let Ux denote the image of Uα in
Sym(P ) and let U+

x denote the group generated by Uβ for all roots β of Σ
containing x. If β is a root of Σ containing x other than α, then Uβ acts
trivially on P . By [62, 11.11(ii)], the group U+

x acts transitively on the set
of apartments containing x. It follows that the permutation group Ux is
independent of the choice of the apartment Σ. Thus gUxg

−1 = Ug(x) for all
x ∈ P and all g ∈ GP and hence the pair

M∆,P := (P, {Ux | x ∈ P})
is a Moufang set as defined in 1.5 and

µΣ(g) = µxy(ḡ)

for all g ∈ Uα, where µΣ is as in 1.18, y is the unique chamber of P ∩α other
than x, µxy is as in 1.6, ḡ denotes the image of g in Ux and µΣ(g) denotes
the image of µΣ(g) in Sym(P ).

Bruhat-Tits buildings.

In these notes, we use the term “Bruhat-Tits building” in the sense intro-
duced in [65]:
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Definition 1.20. A Bruhat-Tits building is a thick irreducible affine building
whose building at infinity is Moufang. The building at infinity of an affine
building is constructed in [65, Chapter 8]. By 1.1, the building at infinity of
a Bruhat-Tits building is spherical, irreducible and thick.

Assumption 1.21. By [65, 27.4], there is no loss in generality if we assume
that the building at infinity Ξ∞ of a Bruhat-Tits building Ξ is formed with
respect to the complete system of apartments of Ξ (as defined in [65, 8.5])
and we will always do this in these notes.

Let Ξ be a Bruhat-Tits building. The type of Ξ is an irreducible affine
Coxeter diagram X̃ℓ for some ℓ ≥ 2 and forX = A, B, . . . , F orG (see 20.41)
and the type of Ξ∞ is Xℓ. By [65, 27.5], the algebraic data corresponding
to the Moufang building Ξ∞ is defined over a field or a skew-field or an
octonion division algebra K which is complete with respect to a discrete
valuation. Tits showed (see [65, 27.6]) that Ξ is uniquely determined by Ξ∞

and completed the classification of Bruhat-Tits buildings by determining
exactly which Moufang buildings can appear as the building at infinity (see
[65, 27.5]).

Notation 1.22. We will apply the notation for Bruhat-Tits buildings given
in the fourth column of Table 27.2 in [65] except that we suppress the refer-
ence to the valuation of K since we are assuming that the system of apart-
ments A is complete, hence that the field or skew-field or octonion division
algebra K is complete and hence that the discrete valuation of K is unique
(by [65, 23.15]). Thus, for example, Ã2(K) denotes the unique Bruhat-Tits
building whose building at infinity is A2(K), B̃E

2 (Λ) = C̃E
2 (Λ) denotes the

unique Bruhat-Tits building whose building at infinity is BE
2 (Λ) = CE

2 (Λ),
etc.

Remark 1.23. If Ξ = X̃∗
ℓ (Λ) in the notation described in 1.22, then Ξ∞ is

obtained by simply removing the tilde. Note, however, that the spherical
Coxeter diagrams Bℓ and Cℓ are the same for all ℓ ≥ 2 as are the affine
Coxeter diagrams B̃2 and C̃2, but that the affine Coxeter diagrams B̃ℓ and
C̃ℓ are not the same when ℓ > 2. As a consequence, the inverse of the process
of “deleting the tilde” is not so straightforward when X = B or C and ℓ > 2.
Suppose, for example, that

∆ = BQ
ℓ (Λ) = CQ

ℓ (Λ)

for some ℓ ≥ 2 and some anisotropic quadratic space Λ = (K,L, q) such that
K is complete with respect to a discrete valuation ν and 1 ∈ q(L). Then by
[65, 19.23], the unique Bruhat-Tits building whose building at infinity is ∆
is X̃Q

ℓ (Λ), where X = B if ν(q(L∗)) = 2Z and X = C if ν(q(L∗)) = Z. Similar
results hold in the other cases; see [65, 27.2].

Definition 1.24. As observed in [65, 30.33], a Moufang building can be
mixed as defined in [65, 30.24] (see also 28.3), algebraic or exceptional as de-
fined in [65, 30.32] or classical as defined in [65, 30.30]. (If it is exceptional,
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it is automatically algebraic, if it is algebraic, then it is either exceptional
or classical and if it is not algebraic, then it is either classical or mixed.)
We will say that a Bruhat-Tits building is mixed, exceptional, classical, re-
spectively, algebraic if its building at infinity is mixed, exceptional, classical,
respectively, algebraic.

Remark 1.25. Let F be a field complete with respect to a discrete valuation
and let G be an absolutely simple algebraic group. If the F -rank of G is 1,
then

(∆, {Ux | x ∈ ∆})
is a Moufang set, where ∆ is the set of parabolic subgroups of G(F ) and
Ux is the unipotent radical of x for each x ∈ ∆, and there exists a tree
Ξ whose set Ξ∞ of ends is ∆ to which the action of the groups Ux can
be extended. These trees together with Bruhat-Tits buildings in our sense
are precisely the affine buildings that were investigated in [7] (together with
certain non-discrete generalizations).

The following result should have been formulated explicitly in [65]:

Theorem 1.26. Let Ξ be a Bruhat-Tits building. Then every automorphism
of ∆ := Ξ∞ is induced by a unique automorphism of Ξ. In other words,
Aut(Ξ) and Aut(∆) are canonically isomorphic.

Proof. By [65, 13.10 and 13.31], it suffices to show that any two valuations
of the root datum of ∆ are equipollent. Let K (or {K,Kop} or {K,E})
be the defining field of ∆ in the sense of [65, 30.29]. By [65, 27.5] K is
complete with respect to a discrete valuation. As was observed in 1.22, the
discrete valuation ν of K is unique. By [65, 19.4, 23.16, 24.9 and 25.5], the
parameter system defining ∆ is ν-compatible as defined in the references in
the second column of [65, Table 27.2]. By [65, 3.41(iii) and 16.4] combined
with the results [65, 20.2(ii), 21.27(ii) and 22.16(ii)], it follows that any two
valuations of the root datum of ∆ are equipollent as claimed.

Remark 1.27. We allow ourselves, in light of 1.26, to identify the auto-
morphism group of a Bruhat-Tits building with the automorphism group
of its building at infinity. Note, however, that the Coxeter diagrams of
Ξ and ∆ are, of course, different, and it can happen (see [65, 18.1]) that
the isomorphism in 1.26 carries non-type-preserving automorphisms of Ξ to
type-preserving elements of ∆.

Simplicial complexes.

In the original definition given in [55], a building is a simplicial complex, but
in these notes (as in [62] and [65]), we view buildings as certain edge-colored
graphs and the residues as certain subgraphs. See [62, 1.2 and 7.1] for the
precise definitions. The vertices of these graphs are called chambers and
when we write, for example, c ∈ ∆ or c ∈ R or c ∈ Σ or c ∈ α, we mean that
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c is a chamber of the building ∆ or the residue R or the apartment Σ or the
root α.
In Chapters 26 and 27, however, where we work more closely with the

notion of the building at infinity of an affine building, the notion of a building
as a simplicial complex plays an important role. We use the rest of this
chapter to fix some notation which we will need (only in those two chapters).

Definition 1.28. A simplicial complex is a pair (V,S), where V is a set
whose elements are called vertices and S is a subset of the power set of V
whose elements are called simplices, such that

(i) {v} ∈ S for all v ∈ V and

(ii) all subsets of a simplex are also simplices.

The dimension of a simplex is its cardinality minus one. The set V is gen-
erally identified with the set of simplices of dimension 0.

Definition 1.29. Let B = (V,S) be a simplicial complex. A numbering of
B is a surjective map from V to a set I (which we call the index set) such
that the restriction of this map to each simplex is injective. A numbered
simplicial complex is a simplicial complex endowed with a numbering.

Definition 1.30. Let B = (V,S) and B′ = (V ′,S ′) be two simplicial com-
plexes with numberings ν and ν′ having index sets I and I ′. A morphism
from (B, ν) to (B′, ν′) is a pair (ξ, σ), where ξ is a map from V to V ′ carrying
simplices to simplices and σ is a map from I to I ′ such that ν′ ◦ ξ = σ ◦ ν.
An isomorphism from (B, ν) to (B′, ν′) is a morphism (ξ, ν) such that ξ and
ν are bijections and (ξ−1, ν−1) is a morphism from (B′, ν′) to (B, ν). We
denote by Aut(B, ν) the group consisting of all isomorphisms from (B, ν)
to itself. A subcomplex of (B, ν) is a numbered simplicial complex (B1, ν1)
whose vertex set is a subset of V and whose index set is a subset of I such
that (incl, incl) is a morphism from (B1, ν1) to (B, ν).

Notation 1.31. Let Π be a Coxeter diagram with vertex set S, let n = |S|,
let ∆ be a building of type Π, let V be the set of all maximal residues of
∆ and let ν be the map from V to S which sends a maximal residue whose
type is J to the unique element s of S such that J = S\{s}. If R is a proper
residue of ∆ and J ⊂ S is its type (so J = ∅ if R is a single chamber), then
for each s ∈ S\J , there exists a unique (S\{s})-residue Rs such that R ⊂ Rs
and by [62, 7.25],

R =
⋂

s∈S\J

Rs.

For each residue R, we denote by AR the set of maximal residues containing
R (so A∆ = ∅) and we set

∆# :=
(
(V,S), ν

)
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where S denotes the set of subsets AR of V for all residues R of ∆ (proper
or not). Then ∆# is a numbered simplicial complex with index set S whose
simplices of dimension k as defined in 1.28 correspond to residues of ∆ of
rank n−k−1 as defined in [65, 29.1]. In particular, every simplex of ∆# has
dimension at most n− 1 and the chambers of ∆ (i.e. the minimal residues)
correspond to the simplices of ∆# of dimension n − 1 (i.e. the maximal
simplices).

Remarks 1.32. Let ∆, ∆#, S and n be as in 1.31. Then the following
hold:

(a) The building ∆ can be reconstructed from ∆#: Two chambers are s-
adjacent in ∆ for some s ∈ S precisely when the intersection of the
corresponding maximal simplices has dimension n− 2.

(b) The correspondence

residues of ∆ simplices of ∆#

is containment-reversing.

(c) There is a canonical isomorphism from Aut(∆) to Aut(∆#).

(d) Apartments of ∆ correspond to certain subcomplexes of ∆#. More
precisely, an apartment Σ of ∆ corresponds to the subcomplex (VΣ,SΣ),
where VΣ is the set of maximal residues of ∆ containing a chamber of Σ
and SΣ is the set of simplices in S containing only elements of VΣ.

In light of these observations, it is natural to think of ∆ and ∆# as the
same object, simply seen from two points of view.
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