
COPYRIGHT NOTICE:

David G. Luenberger: Information Science

is published by Princeton University Press and copyrighted, © 2006, by Princeton
University Press. All rights reserved. No part of this book may be reproduced in any form
by any electronic or mechanical means (including photocopying, recording, or information
storage and retrieval) without permission in writing from the publisher, except for reading
and browsing via the World Wide Web. Users are not permitted to mount this file on any
network servers.

Follow links for Class Use and other Permissions. For more information send email to:
permissions@pupress.princeton.edu

http://www.pupress.princeton.edu/class.html
http://www.pupress.princeton.edu/permissions.html

15
DATA STRUCTURES

I
nformation often resides in data, but data is not always the same as information:
certainly data is not the same as useful information. Nevertheless, often data—
collected in experiments, gleaned from transactions, offered by individuals in ques­

tionnaires, or downloaded from other sources—does contain information of great
value. The challenge is to extract the useful information from all that is available.

Data sources can become enormous and unwieldy. The first step toward trans­
forming data into useful information is to organize the data so that it can be readily
accessed, searched, manipulated, updated, simplified, and sometimes generalized.
Data structures provide the basis of such work. Many of these structures were origi­
nated to facilitate the programming of complex data manipulations, but the principles
underlying data structures are useful more generally, for constructing databases or data
warehouses, for building efficient data retrieval systems, and ultimately for assisting
with the processes of extracting information from data.

Basic data structures include lists, arrays, and trees. From these basics, more com­
plex structures can be built.

We shall find that these basic structures often are used in concert and that one may
be converted to another. For example, an effective way to sort a list is to transform it,
either explicitly or implicitly, into a tree; then sort the tree and transform the results
back to a list. In the process, the tree might be represented as an array. Data structures
are fluid and adaptable, and come in numerous variations.

15.1 Lists

An obvious way to store data is sequentially, as a list, one item after another. Employee
names might constitute a list, for example.

Abstractly, a list is an ordered set of objects (or items) of a given type. A list of
length n can be represented as (a1, a2, . . . , an) where the ai’s are the objects. The

241

242 • C h a p t e r 15 D ATA S T R U C T U R E S

position of an object is its index i in the list. The objects themselves may be numbers,
book catalog records, patient health profiles, gene descriptions, or names of state
capitals. The objects in a list need not be numeric or alphabetic. A row of automobiles
in a parking lot can be regarded as a list.

The objects in a list may be multidimensional. For example, items in a library
catalog may include book title, author, Library of Congress catalog number, date of
publication, publisher, date of acquisition, and availability status. Such an object is
termed a record with individual portions of the record being fields.

For a list to be most useful, it must be possible to carry out certain basic operations
on the list. For example, one may wish to insert additional items in the list, delete
some items, locate an item or items that meet certain criteria, or move to the next
or previous item. The ease with which such basic operations can be performed may
depend on how the list is represented.

Two of the most important operations on a list are sorting and searching. Sorting is
the process of arranging the items according to an ordering of the items. For example,
it may be desired to sort items numerically or alphabetically. If an item is a record
with several fields, the ordering is usually carried out with respect to a single field
termed the key that uniquely identifies the entry in the list. Searching is the process
of finding an item that meets a specific criterion, or concluding that no such item is
in the list. Data structures facilitate sorting and searching, carried out by the basic
operations mentioned in the previous paragraph.

Lists Represented by Arrays

Normally one thinks of a list as an array, the items being placed at successive locations.
For example, the items might be written on successive rows of a sheet of lined paper
or at successive locations in computer storage.

As a physical example, imagine the parking lot of a rental car agency located at
an airport. The parking lot spaces are numbered consecutively. The rental cars also
have identification numbers that serve as their keys. Only a small fraction of the total
inventory of cars is in the lot at any one time.

Suppose the agency keeps track of available cars by storing them in numerical
order in parking spaces, with the car of lowest identification number going in space
number 1. When a car is returned to the lot, it must be put in its proper place between
cars of lower and higher identification numbers. To make room for this car, all cars
with higher identification numbers must be moved one space down the list to provide
an opening (figure 15.1)

Likewise, when a car is rented and leaves the lot, all cars beyond it on the list
must be moved up one space to close the gap. Clearly this is not an efficient way to
store cars.

Inserting or deleting an element in a list that is implemented this way requires, on
average, n/2 movements of items in the list, and even when the items are entries in a
computer, this can be time consuming for large lists. On the other hand, if a particular
item is found, finding the next or previous item is simple. One simply goes to the next
or previous location.

S e c t i o n 15.1 L I S T S • 243

FIGURE 15.1 To insert a new vehicle in the parking lot, several others must be moved.

FIGURE 15.2 Each pointer gives the location of the next car. When a new car arrives, it
can be inserted by updating the pointers, as shown in the bottom part of the figure when
the entering vehicle is sixth on the list.

Linked Lists

The items of a list can be stored in arbitrary locations, provided that a record of their
locations is kept. The simplest way to do this is with a linked list. In such a list the
items are stored arbitrarily in the spaces available, but accompanying each item is a
pointer to the location of the next item on the list.

In the parking lot example, cars can be stored in arbitrary spaces if on each car
there is a pointer sign giving the location of the next car on the list (figure 15.2). To

244 • C h a p t e r 15 D ATA S T R U C T U R E S

find, say the fifth car (the car fifth on the list of available cars sorted by identification
number), you start at the first car, read its pointer telling where the second car is, go
to the second car and learn where the third car is, and so forth, until you reach car 5.

When a new car arrives, it can be parked in any available space. The pointer of
the car preceding it in the sorted list is then changed to indicate the location of this
new car, and the new car is given the pointer that the preceding car had, pointing to
the next car. Hence, by changing one pointer and adding another, the list is updated
to include the new car, and the ordering is preserved.

This procedure works identically for lists stored in a computer. Items can occupy
arbitrary memory locations, with each item appended with a pointer indicating the
location of the next item. By following the pointers, one can traverse the entire list in
order.

It is also simple to remove an item. To do so, it is only necessary to change the
pointer of the preceding object to be the pointer of the object being removed. This
deletes the object from the list even if the object is not physically removed. With no
pointer pointing to it, the object is essentially nonexistent.

Although it is easy to move forward through a linked list, it is not easy to move
backward. The pointers only point forward. This difficulty is solved by a doubly
linked list, in which each object is accompanied by two pointers: one pointing to the
successor item and the other to the predecessor.

Special Lists

Lists often have special uses that dictate a particular form of updating. One of these
is the stack in which objects are entered one by one at the top of the list, each new
addition causing the others to be pushed down one place. Objects are removed from
the top as well, causing the other objects to move upward. The scheme is termed FILO,
for “First In, Last Out.” For example, if you make changes in a word processor, these
changes are saved one at a time in a stack. Then if you decide to undo a change, the
first change restored is the last that was made, since it comes off the top of the stack.

The sister to the stack is the queue in which objects are entered one by one at
the top of the list, and removed from the bottom of the list. This is termed FIFO, for
“First In, First Out.” It simulates a queue of people waiting for service at the bank, or
program steps waiting to be executed. The first in line is the first served.

15.2 Trees

Trees are valuable structures used in formal and informal representation,
analysis, and manipulation of data. Trees represent structures such as
organizational charts, genealogy (family trees), contest standings (as in a
tennis ladder), and various other hierarchical structures.

In fact, a tree is basically a hierarchical arrangement of nodes. One node

P

Y
K U A

E
T

EC
C

U

C

M
T A

Y

S

M

6
WZ

4
5

8
7

JS

B

A

V

F

T
9

X

H

U

Y

R

G

N

P

Y
KB U A

A

E

V
T

F
EC

CCC
CC U

C

M
T

T

A

9XX

X

HUU

U

YY

S

M

R

DD

G

6
WZ

4
5

8
7

JS N

3355

22
BB

is designated as the root, and (although it is called a root) it is usually visualized
as being at the top of the hierarchy. The simplest nonempty trees consist of a

single root and no other nodes.
Generally, a node has a number of children nodes directly connected to it but one

level further down the hierarchy. Every node i, except the root, has a single parent,

S e c t i o n 15.2 T R E E S • 245

FIGURE 15.3 A tree. The root has three children, each of which has two children.
There are a total of ten leaf nodes.

such that i is a child of this parent. A node without children is termed a leaf. The
parent–child relation is described pictorially by lines connecting the corresponding
nodes as shown in figure 15.3.

In a binary tree every node has at most two children. It is conventional to refer
to a child in a binary tree as either a left child or a right child, where naturally the
left child is the one located below and to the left of the parent and the right child is
located below and to the right of the parent. Clearly, in a binary tree each node may
have either no children, a left child, a right child, or both a left and right child.

Ordered Trees

It is often convenient to number the nodes systematically. In one simple method, the
root is assigned number 1. Then at the next level numbers are assigned sequentially,
starting from the left and working across to the right. This is continued through
successive levels. The version of the tree of figure 15.3 numbered this way is shown
in figure 15.4.

Other numbering strategies, useful in certain computational procedures, are
discussed in the next section in the context of transversal.

Representation of Trees

One of the simplest ways to represent a tree is with a set of pointers that point down
the tree. The position of the root is specified first. At every node, pointers to the
locations of each of its children are listed. It is then possible to move from the root

246 • C h a p t e r 15 D ATA S T R U C T U R E S

1

2 3 4

5 6 7 8 9 10

11 12 13 14 15 16

17 18 19 FIGURE 15.4 An ordered version of the tree in figure 15.3.

1

2 3

4 5 6 8

9

7

10

1 xxx 0
2 xxx 1
3 xxx 1
4 xxx 2
5 xxx 2
6 xxx 3
7 xxx 3
8 xxx 3
9

10
xxx 5
xxx 5

8

3
5
7

2
4
6

9
N

N
N
N
N
N

xxx

xxx

xxx

1
2
3
4 xxx
5
6
7
8
9

10

xxx 10
xxx
xxx
xxx
xxx
xxx

FIGURE 15.5 A tree and an array representation. The record
of each node is placed in the array, followed by a pointer to the
parent of the node.

down a variety of paths, following one of the pointers at each node encoun­
tered. The entire structure of the tree is embodied in this pointer structure.
Alternatively, each node may contain pointers to its parents. This too is
sufficient to describe the tree.

A tree can be represented concretely as an array, in any one of several
ways. Figure 15.5 shows a tree of record locations and the tree’s representa-

FIGURE 15.6 A list represen-
tation of the tree of fig. 15.5.
Each node is represented by its

tion as an array, which contains the records as well as the node numbers
and pointer to the parent. The entire tree structure is embodied in this

contents and a list of its chil- array.
dren. The symbol N denotes that A tree can also be represented as a series of lists. For example, a tree can
the node has no children and is be described by listing the children of each node. Figure 15.6 shows this
therefore a leaf node. representation for the tree of figure 15.5.

S e c t i o n 15.3 T R AV E R S A L O F T R E E S • 247

15.3 Traversal of Trees

Frequently it is desirable to traverse a tree, visiting every node to find one that satisfies
a search criterion or to modify the contents of the nodes. If the tree is represented
only by its parent–child relations, such a traverse must move systematically node by
node: from parent to child, or from child to parent.

As an analogue, imagine that the connecting lines of the tree are pathways. To
traverse the tree, one must walk on the paths in a route that visits every node. Some
duplication is likely to be necessary—some nodes will be visited more than once—but
we seek a systematic strategy. Such a strategy is illustrated in figure 15.7. The route
indicated by the dotted line goes through every node, and it stays on the connecting
paths. From the figure it is clear that if a complete cycle from the root back to the root
is made, each leaf node will be visited only once, but others will be visited at least
twice.

This traversal route can be used to order the nodes in one of several ways. The most
direct numbering system is termed preorder. In this method, the nodes are numbered
sequentially as they are passed the first time in the traversal that cycles the tree in the
counterclockwise direction. The resulting node ordering for the tree of figure 15.7 is
given by the numbers indicated in the nodes.

A special ordering for binary trees is termed inorder. In this method, the tree
is again traversed according to the counterclockwise cycle, just as before. The leaf
nodes are numbered the first (and only) time they are passed. However, other nodes
are numbered the second time they are passed. The root, for example, will usually
not be assigned number 1.

1

2 7

3 4 8

5 6

9 10

FIGURE 15.7 Traversal of a tree. A counterclockwise cycle defines a traversal that
goes through every node at least once. The numbers in the nodes in this tree are
those defined by the preorder method of ordering.

248 • C h a p t e r 15 D ATA S T R U C T U R E S

6

2 8

1 4 7 9

3 5 10

FIGURE 15.8 Inorder of a binary tree. Leaf nodes are numbered the first (and only)
time they are passed. Other nodes are numbered the second time they are passed.
A node without a left child is numbered before its right child.

There is a special case of this method that must be treated carefully. If a node has a
single child and that child is a right child rather than a left child, then an artificial left
child must be assigned to that parent. This artificial node does not get a number, but
its existence insures that the parent will be visited twice before the traverse reaches
the single right child. For example, in a tree consisting of a root and a single right
child, the root would be numbered 1, because the root would be visited twice (the
second time being after the visit to the artificial left child) before the right child
is reached.

Another way to characterize the inorder order is that it numbers trees in LNR
order; that is, in Left, Node, Right order. A left child is numbered first, followed
by the node, followed by the right child. If there is no left child, then the node is
numbered first.1

An example of a binary tree in inorder order is shown in figure 15.8. The numbers
can be verified by making a counterclockwise cycle of the tree. Notice that node 9
has a single child, which is a right child. Hence, following the LNR rule, node 9
is numbered before node 10. This is the same ordering as would be obtained by
appending an artificial left child to node 9, but not assigning it a number as the tree
was traversed.

15.4 Binary Search Trees (BSTs)

The binary search tree is one of the most powerful of the basic data structures. Such
trees lead to simple, yet highly efficient representations for searching and sorting data.
It employs the inorder method of ordering.

A binary search tree is applicable when the objects to be processed possess key
values that can be ranked (such as alphabetically or numerically). Construction of the

1The process can be described recursively by defining the general step at a node: visit left child and carry
out the process, then number the current node, then visit right child and carry out the process. Start at
the root.

S e c t i o n 15.4 B I N A R Y S E A R C H T R E E S (B S T S) • 249

tree and the search through it are governed by the order inherent in the key values.
A binary search tree is built in such a way that an inorder transversal leads to a sorted
ordering.

The process is simple. The first object becomes the root of the tree. The next object
is compared with the root and becomes a left or right child of the root depending on
whether its key value is less than the root or greater than (or equal to) the root.
Subsequent objects are entered by comparing them first with the root, determining
whether to go left or right, then continuing down the tree, making similar comparisons
at every node encountered, until it becomes either the first or second child of a
parent.

An example should clarify the procedure. Suppose we wish to alphabetize the
following names: Linda, Joanne, Carl, Robert, Jenna, Steve, Marion, Nancy, Ian,
Jill, Susan, Fred. The tree is built by taking the first name, Linda, as the root. The
next name, Joanne, is then compared with the root. If it is lower in the alphabet, it
becomes the left child, otherwise the right child. Thus Joanne becomes the left child
of Linda. Then Carl goes left of Linda and left of Joanne. The complete binary search
tree is shown in figure 15.9.

In the example, artificial nodes are adjoined as left children of Carl, Marion,
and Steve to remind us how to define the inorder. Indeed, Carl is the first item in
the inorder. The other items can be quickly ordered by traversing through the tree
counterclockwise, leading to Carl, Fred, Ian, Jenna, Jill, Joanne, Linda, Marion,
Nancy, Robert, Steve, Susan.

To search for a name, say Nancy, it is only necessary to follow the path downward.
Nancy must be to the right of Linda, to the left of Robert, and to the right of Marion.
Bingo! There she is. Alternatively, if a search is instituted for a name such as Ralph
that is not on the list, one will progress down to a leaf node with no place farther to
go, and hence conclude that Ralph is not on the list.

Linda

Joanne

Jenna Susan

JillIan

Robert

Marion Steve Carl

Nancy

Fred

FIGURE 15.9 A binary search tree of names. The tree automatically puts the names in
inorder as it is constructed.

250 • C h a p t e r 15 D ATA S T R U C T U R E S

Another example of a binary search tree is the tree of figure 15.8. It is the BST
that would result from construction based on the unordered sequence 6, 2, 8, 4, 1, 3,
5, 9, 7, 10.

Binary search trees are used in many practical applications, such as airline
reservation systems where individuals’ names are entered sequentially as they
book flights.

Average Path Length

Searching for an object in a BST entails traveling along the unique path from the root
to the object. The total search time is proportional to the total number of comparisons
required, and hence proportional to the length of the path.

The length of such a path in a BST with n nodes can vary widely, depending on
TABLE 15.1

the particular tree. The best case is when the tree is balanced, with each node having Worst and Best Path
two children. In this case the total number of nodes n is of the form n = 2k − 1 for Lengths to a Leaf. In

the worst case the path some integer k ≥ 1. The maximum length of a path, in terms of the number of nodes
length of a tree with n visited, is then Lmax = k; or in terms of n, Lmax = log2 (n + 1).
nodes is n. For a balanced The worst case is when each node, except the last (which is a leaf node), has only
tree the path length is a single child. The length of a path from top to bottom is n. In general, therefore, the
log(n + 1). maximum path length varies between log (n + 1) and n.

As shown in table 15.1, there is a tremendous difference between these two bounds
n log (n + 1)
7 3 for even modest values of n. For a tree of about 1 billion nodes, the length from the

127 7 root to a leaf node is at most 30 if the tree is balanced. On the other hand, if the tree

1,023 10 is completely unbalanced, the length is a billion.
16,383 14 It is of great importance to know what length might be expected in actual applica-

131,071 17 tion. For n = 1 billion, is the number of required comparisons for a search closer to
1,048,575 20 1 billion or to 30?

16,777,215 24 This question can be addressed by considering a binary search tree with n objects,
134,217,727 27 under the assumption that the ordering of the keys is initially random. Let P(n) be the

1,073,741,823 30 average path length to a random object where now the object is not necessarily at a
leaf node. The following important result characterizes P(n).

Theorem 15.1. The function P(n) satisfies

P(n) ≤ 1 + 2 ln n ≤ 1 + 1.386 log n.

Proof: Define Q(n) as the expected total number of node visits required to construct
the entire binary search tree. The average number of visits to a particular node P(n)
is then Q(n) divided by n.

The nodes are referred to by node numbers 1 though n, which are taken to be
identical to the ranking of their keys. Hence the proper ordering is 1 through n. A step
occurs when two elements are compared. Two elements i and j are compared at most
once. We shall find the probability that i and j are compared, and for this purpose it
can be assumed that i < j.

Consider the chain of values i, i + 1, i + 2, . . . , j that has L = j + 1 − i members.
The elements arrive randomly for placement. If any element k with i < k < j arrives

� �

S e c t i o n 15.4 B I N A R Y S E A R C H T R E E S (B S T S) • 251

before i or j, then i will never be compared with j, for i will be sent left of k and j will
be sent right. Hence, i is compared with j only if i or j occurs before all other elements
in the chain. The probability of i or j occurring first among the L elements is 2/L.

The expected total number of comparisons is therefore nL × 2/L, where nL is the
number of chains of length L. This number is NL = n + 1 − L, for L = 2, 3, . . . , n.
In addition, each node is considered to visit itself. Hence the total number of
visits is

n � 2
n � (n + 1 − L)

Q(n) = n + nL = n + 2 .
L L

L = 2 L = 2

Using the standard approximation to the harmonic sum of 1/L’s (see exercise 2),

n � n � 1 1 ≤ dx = ln n, (15.1)
L x=1 x

L = 2

gives P(n) = Q(n)/n as

n � n + 1 − L
P(n) = 1 + 2

nL
L = 2 � � �

1
� n � 11 = 1 − 2 1 − + 2 1 +

n n L
L = 2

1 ≤ 1 + 2 ln n + 2 (1 + ln n) − 1 . (15.2)
n

The term in brackets is always less than or equal to zero. Hence

P(n) ≤ 1 + 2 ln n ≤ 1 + 1.386 log n.

The actual values of P(n) are extremely close to the bound given by the theorem.
If the bracketed term in equation (15.2) is included, a tighter upper bound Pu(n) is
obtained that is at most two steps less than 1 + 2 ln n. A lower bound Pl(n) can be
constructed, by using a lower bound on the sum in equation (15.1) (see exercise 3)
that is only about two steps less than Pu(n). Hence the actual value of P(n) is within
two steps of either of these strong bounds. For example, the value of P(1 billion) is
between the bounds of 39.0602373 and 40.44653173.

Measures of efficiency as a function of the problem size n usually focus on the
performance for large n. Typically, this asymptotic behavior is expressed in “big O”
notation. A statement that the number of steps is T (n) = O(nk) means that there
is a constant c ≥ 0 such that T (n) ≤ cnk for sufficiently large n. Thus if T (n) =
47 + 2n + 19n2, then T (n) is O(n2).

A stronger notion is defined by � notation. A statement that T (n) = �(nk) means
that there are positive constants c1, c2 such that c1nk ≤ T (n) ≤ c2nk for sufficiently
large n. Hence �(nk) implies O(nk), but the reverse implication is not necessarily
true. With this notation, the path length of BSTs is at worst �(n), but on average
�(log n).

252 • C h a p t e r 15 D ATA S T R U C T U R E S

6

2 8

1 4 7 9

3 5

6

2

3

4

7

8

9

-

6

4

2

8

6

8

2

1

-

3

-

7

-

8

4

-

5

-

9

-

N P L R

FIGURE 15.10 A binary tree and its representation as a table. The table shows node,
parent, left child, right child.

Representation

A table representation of a binary tree listing the left and right children of various
nodes facilitates rapid search through the tree. An example is shown in figure 15.10.
To search for node 3, for instance, one begins at the root 6 and moves to the left child
2, then to the right child 4, then to the left child to arrive at 3. The parent pointers
are not needed for this type of search, but they are useful when traversing a tree. For
instance, after arriving at node 3 in the figure, which is seen to be a leaf because it has
no children, the pointer to the parent makes it possible to move back up to node 4.

15.5 Partially Ordered Trees

A partially ordered tree is a binary tree that is balanced as much as possible and has
all of its leaf nodes at the lowest level as far to the left as possible. Furthermore, the
key value of any node is less than or equal to that of its children.

The first requirement implies that if there is a total of h levels, then the (h − 1)-th
level is full with 2h−1 nodes, and the h-th level has all of its nodes to the left. The
second requirement means that as one moves down the tree along any path, the key
value never decreases. An example of a partially ordered tree is shown in figure 15.11.

Partially ordered trees are sometimes used to represent priority queues, ordering
the service of various customers or jobs. The first customer in the queue is represented
by the root. When served, that node is eliminated and the tree is reconfigured to a
new priority queue.

To reorder the tree when the root is eliminated, the root is replaced by the node in
the tree at the lowest level and at the rightmost position. The tree is then still balanced
as much as possible but with one less node than before at the lowest level. To restore
the partial order, the new root is pushed down the tree, exchanging it with its child of
smallest key value until its key value is no smaller than that of either of its children

S e c t i o n 15.5 PA R T I A L LY O R D E R E D T R E E S • 253

6

8

11

13 17

19

20 16

15

12 23

14

20 22

12

26 21 24 28 18

FIGURE 15.11 A partially ordered tree. Each node has a lower key value than its
children, and the tree is balanced as much as possible, with all levels except the last full,
and all nodes in the bottom level located to the left as far as possible.

or until it becomes a leaf node. Figure 15.12 shows the process of restoring the tree
of figure 15.11 after the root node has been eliminated and replaced by the rightmost
node at the bottom level.

The importance of partially ordered trees is derived from the efficiency of the
restoration (push down) process. The maximum number of necessary exchanges is
equal to the depth of the tree. This number is equal to at most log (n + 1). Hence, the
restoration process is a O(log n) process. We will later see how this can be used to
advantage when sorting large lists.

18

8

11

13 17

19

20 16

15

12 23

14

20 22

8

18 12

11

13 17

19

20 16

15

12 23

14

20 22

8

11 12

18

13 17

19

20 16

15

12 23

14

20 22

8

11 12

16

13 17

19

20 18

15

12 23

14

20 22

(a) (b)

(c) (d)

12

26 21 24 28 26 21 24 28

26 21 24 28 26 21 24 28

FIGURE 15.12 Pushing down a node. From figure 15.11 with the original root 6 dropped, the new root 18 is
shown in (a). This root is exchanged with its smallest child 8 in (b). Then 18 is further exchanged with its new smallest
child 11 in (c). Finally, 18 is exchanged with the new smallest child 16 as shown in (d). No further exchanges are
necessar y, and the tree is again partially ordered.

254 • C h a p t e r 15 D ATA S T R U C T U R E S

Heaps

Another advantage of partially ordered trees is that they can be stored efficiently in
array form. This feature depends only on the balanced nature of the tree rather than
its order, but the term heap usually refers to the partially ordered version.

Generally, the nodes of a partially ordered tree are numbered consecutively across
each level. This numbering is independent of the key value. The root is number 1,
its left child is 2, and this level is numbered up to 4. Because the tree is balanced as
much as possible, the children of any node, say number i, are at node numbers 2i and
2i + 1. Hence it is easy to move through the tree in array form. Suppose the tree of
figure 15.11 is numbered that way. Then it can be represented by the following array.

node number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 16 17 18 19
key value 6 8 12 11 15 14 19 20 16 13 12 17 23 20 22 26 21 24 28 18

No pointers need be appended to the list, since the children of node i are located
systematically at 2i and 2i + 1. Note, for example, that the children of node 5 (with
key value 15) are nodes 2 · 5 = 10 and 2 · 5 + 1 = 11 (with key values 13 and 12).
Manipulations such as the push-down process can be carried out directly on the array
representation of the tree.

∗15.6 Tries

10

11 00

10

The term2 trie is derived from retrieval and refers to a special type of tree useful for
representing strings of data, such as words, codes, or numbers of several digits. The
branches (or the nodes) of a trie are labeled with symbols in such a way that movement
down the tree along a path from root to leaf defines an acceptable string. Tries were
used in chapters 2 and 3 to study codes. Figure 15.13 is a trie representation of a
Huffman code with codewords 00, 010, 011, 10, 11. The codewords are found by
following the branches from the root to a leaf. Such a trie is a convenient way to verify
that no codeword is a preface to another, for a preface would be found before reaching
a leaf. Word tries are also used as dictionaries in some spell-checking programs.

FIGURE 15.13 Code- In general, a valid string in the trie may in fact be a preface to other valid strings.
word trie. Code words THE is a preface to THESE, for instance. This situation is handled in a trie by
are read by beginning introducing a special symbol, such as �, to indicate the end of a string. Figure 15.14
at the root and moving

shows a partial trie for common English words. Note that there are three instances of
down a path to a leaf.

the � symbol to signal that THE, TO, and TON are valid words even though they are
prefaces to longer words.

When used as a dictionary words are checked by tracing a path down the trie,
following the sequence of letters in a word being tested. If the word is in the trie, the
path will end at a leaf node or a �. If a word is not in the trie, its path will reach a
point where there is no appropriate branch or it will reach a leaf node before the word
is complete.

2Tries are alternatively termed digital search trees.

S e c t i o n 15.7 B A S I C S O R T I N G A LG O R I T H M S • 255

T O

RNFOH

∆ N

Y∆

IA
E

T Y S∆

FIGURE 15.14 Word trie. Words are found by moving down a path. The � symbol indi-
cates the end of an acceptable word. For example, THE and THEY are valid words in this
tree.

15.7 Basic Sorting Algorithms

One of the most important applications of the data structures studied in this chapter
is to the sorting of lists. Sorting may seem to be a trivial or routine operation, but
sorting is an integral component of many sophisticated data analysis procedures,
and hence can be regarded as fundamental to the extraction of information from
data. As much as 25 percent of computer time worldwide is devoted to sorting and
searching. Improvements in sorting efficiency can accordingly pay large dividends.
Good sorting methods are concrete illustrations of the importance and power of data
structure theory.

Sorting is, of course, the ordering of a list of objects, with the order determined
by a key. A sort can be made relative to numerical or alphabetical order, by date,
by string length, or by any other key quantity that can be ordered. Usually ties are
allowed, in which case the tied objects are placed together in the sorted list.

Two of the simplest sorting methods are presented in this section. Although they
are useful only for relatively short lists, they are a preview of, and provide motivation
for, the more efficient methods discussed in the next two sections.

Bubble Sort

The name bubble sort expresses the view that this sorting process bubbles up low-
valued key items, floating them over the higher-valued key items.

Suppose there are n items in a list, and imagine that they are listed vertically.
Suppose also that we want to sort this list according to key value, with the item with
lowest key value at the top. To begin the process, the bottom two items, in positions
n − 1 and n, are compared. If the bottom item has a key value less than the one above
it, the two are exchanged; otherwise not. The two bottom items are then in order. The
process then moves up one step, comparing the items at positions n − 2 and n − 1.
They are exchanged if necessary to bring these two into proper order. This pair-wise
comparison is continued up to the top of the list.

256 • C h a p t e r 15 D ATA S T R U C T U R E S

Math Art Art Art Art Art

English Math English English English English

History English Math Gymnastics Gymnastics Gymnastics

Gymnastics History Gymnastics Math History History

Language Gymnastics History History Math Language

Art Language Language Language Language Math

FIGURE 15.15 Bubble sort. Each successive column shows the result of an additional
full pass. The boldface items have completed their upward bubbling.

After one complete pass, the lowest-valued item will be at the top, because once it is
encountered in a comparison, it will be the lowest item in all subsequent comparisons
and will thus be exchanged over and over again, bubbling up to the top. Another pass
will bubble the second lowest item up to the second position.

Additional passes are made, although the k-th pass need not include the top k − 1
items since they are already in proper order. All items will be properly ordered after
at most n − 1 passes. An example is shown in figure 15.15, where class titles are
sorted alphabetically.

Measures of the efficiency of bubble sort focus on the number of comparisons or
exchanges required. The best situation is when the list is initially in proper order, in
which case n − 1 comparisons and no exchanges are needed. The worst situation is
when the list is initially in reverse order. Then the comparisons and exchanges in the
first pass are both n− 1 in number. Likewise, the k-th pass requires n− k comparisons �n−1and exchanges. The total is k=1 (n − k) = n(n − 1)/2 comparisons and exchanges.
Therefore in the best case, bubble sort is a �(n) process, while in the worst case it is
a �(n2) process.

The average number of exchanges required in bubble sort can be deduced from the
following clever observation. Consider a list L with n items ordered randomly, and
consider the list L, which is ordered in the exact reverse of L. Suppose bubble sort is
applied to each list separately. Two items i and j will be out of order in exactly one of
the lists, and so at some point they will be exchanged in that list. Since this applies
to any two items, there must be exactly one exchange, in either L or L, for every
pair of items. Since there are exactly n(n − 1)/2 distinct pairs, sorting both L and L
requires n(n − 1)/2 exchanges. This means that, on average, n(n − 1)/4 exchanges
are required for a list of length n. Thus bubble sort is, on average, a �(n2) process.3

It can be shown that the average number of comparisons is also �(n2).

Insertion Sort

In insertion sort items are inserted, one by one, into an incomplete list that is always
properly sorted and that grows to full size. The result is the desired sorted list.

3It is assumed that all items have different key values.

Information

15.8 Quicksort

S e c t i o n 15.8 Q U I C K S O R T • 257

Math English English English English Art

English Math History Gymnastics Gymnastics English

History Math History History Gymnastics

Gymnastics Math Language History

Language Math Language

Art Math

FIGURE 15.16 Insertion sort. Each successive column shows the result of an additional
insertion of an item from the first column.

Again it is useful to imagine the list arranged vertically. The top item is considered,
by itself, to be the single item in a short list of length 1; this short list is clearly in
proper order. The second item in the main list is then inserted into the short list, and
by an exchange if necessary, the new two-item list is properly ordered. Additional
items are inserted one by one, keeping the partial list in order. When all items are
inserted, the entire list is properly sorted. The details of an insertion sort applied to
the same list used to illustrate a bubble sort are shown in figure 15.16.

The performance of insertion sort is similar to that of bubble sort. The number
of exchanges is on average identical to the number required by bubble sort because
the same symmetry argument applies. The average number of comparisons is, how­
ever, approximately one-half the number required by bubble sort, and for this reason
insertion sort is considered superior to bubble sort. Both of these methods are �(n2)
processes on average.

The basic ideas of these algorithms, however, can be combined with tree structures
to produce highly effective sorting algorithms, as discussed in the next section.

From an information-theoretic viewpoint, the entropy associated with knowledge of
the permutation embodied in the initial order of n items is log (n!). Since log (n!) ≈
n log (n/e), about n log (n/e) bits of information are needed to sort a list of length n.

Comparison of the order of two items constitutes a single bit. Hence, it might rea­
sonably be inferred that there are sorting algorithms that on average require �(n log n)
comparisons. Furthermore, it is clear from the information-theoretic argument that
this is the best that can be done. Two algorithms that achieve this average are presented
in the following sections.

The sort algorithm considered most effective overall is quicksort. Its strategy is
best understood as a practical implementation of the binary search tree discussed in
section 15.4.

258 • C h a p t e r 15 D ATA S T R U C T U R E S

Tree Version of Insertion Sort

Imagine an insertion sort that inserts items one by one into a BST rather than into a
linear list. When the tree is complete, the items can be read out in inorder to construct
an ordered version of the original list. This is illustrated in figure 15.17.

This method can be extremely effective, with the one drawback that a tree must be
constructed outside the original list. In other words, unlike bubble sort or insertion
sort, this BST method does not take place within the list itself, but must build another
structure as well.

The Quicksort Algorithm*

Quicksort provides a strategy that takes advantage of the BST structure but carries out
the sort within the original list. The list is visualized as being laid out horizontally.
To start, a root is selected and then, rather than processing each item in turn, all items
with key values less than that of the root are placed to the left of the root, and all items
with key values greater than or equal to that of the root are placed to the right. Those
items now on the left can then be handled separately, using the same procedure, by
selecting a lower-level root (called a pivot) for the left. Likewise, those items now on
the right can be handled by a similar process. These processes are continued in each
subgroup, leading to smaller subgroups, until the resulting subgroups contain only a
single item or items that have equal key values.

6

2 8

1 4 7 9

3 5

6

2

1

8

9

4

7

5

10

3

Original list

BST

10

Sorted list

FIGURE 15.17 Insertion into a binary search tree (BST). Items from a list are inserted
one by one into the BST; then the sorted version is read out to construct a sorted list.

S e c t i o n 15.8 Q U I C K S O R T • 259

One way to select the appropriate pivot for each group is to examine the two
leftmost items and select the one with the largest key value. This guarantees that the
pivot is not the item with the smallest key value.

Once the pivot is selected, some items must be moved left or right to their proper
section of the list. For this purpose, left and right cursors are introduced. The left
cursor begins at the far left and moves right until it encounters an element with key
value equal to or greater than that of the pivot. The right cursor moves left until it
encounters an item of key value less than that of the pivot. If the cursors have not
met, the items they have encountered are swapped. Then the cursors continue their
progress until they reach another stopping point, where another swap is made. This
process continues until the cursors meet. The result is that the list is divided into two
segments: a left-hand portion with all elements having key values less than that of the
pivot and a right-hand portion with all items having key values greater than or equal
to that of the pivot. These two segments are then processed individually in the same
way, producing smaller segments, and so forth. If at any stage a segment consists
of a single element or equal elements, that segment need not be processed further.
Eventually, all segments will be of that type, and the sort is complete. An example is
shown in figure 15.18.

3 2 6 6 7 8 4 1 2 5 4

v = 3

2 2 1 6 7 8 4 6 3 5 4
v = 2 v = 7

1 2 2 6 4 5 4 6 3 8 7
v = 6 v = 8

3 4 5 4 6 6 7 8
v = 4

3 4 5 4
v = 5

4 4 5

1 2 2 3 4 4 5 6 6 7 8

FIGURE 15.18 Quicksort. In the initial list, 3 is chosen as the pivot element (indicated
by v = 3) since it is the larger of the first two elements. The left cursor is halted immediately
at the 3. The right cursor advances leftward until it reaches 2, at which point the 3 and
2 are swapped. A further swap of 6 and 1 occurs. At that point the list is divided into
two parts as shown by the separating bar in the figure. The individual portions are then
processed in the same way. The final version of the list is shown in the last line.

260 • C h a p t e r 15 D ATA S T R U C T U R E S

Efficiency

Quicksort inherits its efficiency from the characteristics of the BST. The number of
steps required in a path through a BST is in the worst case �(n) and in the best and
average cases �(log n). Sorting n numbers can be expected to require about n times
as many steps, and accordingly, the worst performance of quicksort is �(n2). The
best and average cases are O(n log n) and �(n log n), respectively. The O(n log n)
performance is a huge improvement over bubble sort and insertion sort, and is con­
sistent with the best performance implied by entropy considerations. A strategy
to improve worst-case performance is to select the pivot points randomly. Then,
against any particular set of input data, the expected number of steps is on average
�(n log n).

15.9 Heapsort

Heapsort is another tree-based sorting method, but it uses the partially ordered tree
data structure rather than the BST. It has the (theoretical) advantage that it is at worst,
best, and average a �(n log n) process. Thus unlike quicksort, which may require
�(n2) operations in the worst case, heapsort is a �(n log n) process in all cases.

First imagine that the list is to be entered into a partially ordered tree. There are
two ways to do this. The first way can be viewed as a tree version of bubble sort. In
this method items are initially entered into the tree in any order while simply assuring
that the tree is balanced as much as possible. Then each item in the bottom level is
compared with its parent, and if the parent has higher key value, the parent is swapped
with its lowest-valued child. After the lowest level is processed in this way, the next
higher level is processed in the same way, and so forth up to the top. This entire
process is then repeated, starting again at the bottom level. After at most O(n) such
passes, the tree will be partially ordered.

The second method for achieving the partially ordered form can be viewed as a
tree version of insertion sort. Items are entered one by one at the bottom level and
moved up level by level until the key value of its parent is less than or equal to the
key value of the new item.

Once the tree is partially ordered, the items can be sorted by using the push-down
process discussed in section 15.5. As items are extracted from the tree, they are placed
in a sorted version of the original list.

Heapsort can be carried out without constructing a tree separate from the original
list by using the heap structure. The list itself is viewed as a tree by considering each
item i as having items 2i and 2i + 1 as its children.

Although heapsort’s worst-case performance is far superior to that of quicksort
and both are O(n log n) on average, experience has shown that heapsort is in practice
rarely as efficient as quicksort.

Going from a linear list to a two-dimensional tree structure reduced the sorting
time from O(n2) to O(n log n). One might suspect that going to a three-dimensional
structure will give further improvement. However, consideration of entropy shows
that O(n log n) is the best that can be achieved on average.

S e c t i o n 15.10 M E R G E S • 261

15.10 Merges

Frequently it is necessary to merge two lists L1 and L2, each of which has been sorted,
into a new sorted list L containing all of the items in both L1 and L2. If these two lists
can be simultaneously accommodated in the internal memory of the computer, there
is a simple and effective method to attain the desired result.

The method begins by comparing the first item in each list, and inserting the item
with the lowest key value of the two into the master list and removing it from its
original list. This procedure is repeated until all items have been inserted, or until one
of the original lists is exhausted, in which case the remainder of the surviving list is
inserted.

This method can be extended to the merge of any number of sorted lists: simply
compare the first of each and insert the one with lowest key value into the master list,
deleting it from its original list.

It may be a law of nature that people seem to need more data than can be handled
conveniently in their existing computing systems, and certainly more than can be
stored in internal memory. Thus, historically, computer systems have employed tape
drives, magnetic drums, and magnetic disks as external storage to augment internal
storage.

Sorting huge lists that cannot be accommodated in internal memory is usually
carried out by dividing the list into a number of smaller sublists, each of which
can be sorted in internal memory. These separate sorted lists are then merged. The
overall sorting and merging strategy moves segments of data back and forth between
internal and external memory. There are many such strategies, the advantage of each
depending somewhat on the physical characteristics and performance of internal and
external storage devices.

Linear Time Sorting

There are a number of sorting algorithms that sort items in O(n) time, which of
course is faster than the �(n log n) algorithms discussed in the past few sections.
The difference is that these algorithms apply to special cases—cases where the key
values of the items have some known structure. For example, counting sort applies to
sorting integers known to lie in a fixed range 0 to k. These algorithms take advantage
of the special structure to reduce direct comparisons between elements. As a simple
example, in counting sort the proper placement of the element 0 is known to be at the
top of the list; no comparison with other numbers is required.

� �

�

�

262 • C h a p t e r 15 D ATA S T R U C T U R E S

15.11 EXERCISES

1. (Alphabetize) Insert these items into a BST (using alphabetical order): Hockey, Baseball,
Football, Tennis, Swimming, Ice skating, Badminton, Hopscotch, Basketball,
Water polo, Crew.

2. (Harmonic inequality) By graphically comparing (1/x) dx to (1/k), prove that

n � 1
ln (n + 1) − ln2 ≤ ≤ ln n.

k
k=2

3. (Lower estimate) Use exercise 2 to find a lower bound Pl(n) for the average path length of
a BST, and show that this average length is in fact �(log n).

4. (Balanced) Consider a binary tree balanced as much as possible. Suppose that all elements at
the bottom level are first considered for exchange upward, then the next level, etc. However,
a child is bubbled up only if its key value is less than that of its parent and no greater than
that of its sibling. Show that once an element bubbles upward (after processing its entire
level), it never moves down again. Hence, argue that putting an n-node tree in partial order
with the bubble up process is an O(n log n) process.

5. (Perfectly balanced) A perfectly balanced binary tree has 2k−1 nodes at level k for each
mlevel k. If there are m levels, the total number of nodes is thus n = k=1 2k−1 = 2m − 1.

(a) Argue that the average length of a path from the root to a random node is

m
k=1 k2k−1

L(m) = .
2m − 1

(b) Show that
m m

L(m) = m − 1 + = m − 1 + .
2m − 1 n

That is, for large m, the average length is essentially equal to the length to the

second-to-last level.

Hint:

m � a − am+1
ka =

1 − a
k=1
m �

kak =
a + am+1[am − m − 1]

(1 − a)2
.

k=1

6. (Bubble count) Consider the list L = (5, 3, 1, 2, 4).
(a) Sort the list L with bubble sort and count the number of exchanges required.
(b) Sort the list L, which has the reverse order of L, and count the number of exchanges

required.
(c) Is the sum of these exchanges equal to n(n− 1)/2, where n is the length of the list?

S e c t i o n 15.12 B I B L I O G R A P H Y • 263

A

C

L

GF

B

D
E

H

M

K

PO

J
I

N

FIGURE 15.19 Tree for exercise.

7. (Order the tree) Given the tree in figure 15.19, order the elements in inorder and preorder.

8. (A quicksort) Do a quicksort of the following numbers: 3, 6, 7, 2, 9, 1, 4, using 6 as the
initial root.

15.12 Bibliography

The material of this chapter is treated comprehensively in several good textbooks such
as [2], [3], [4], and [5]. An especially concise and modern presentation that greatly
influenced this chapter is [1]. The method for evaluating the average path length in
a BST is adopted from the comprehensive text [5]. [6] is a valuable reference that
provides depth and numerous extensions of the methods presented in this chapter.

References

[1] Aho, Alfred V., John E. Hopcroft, and Jeffrey Ullman. Data Structures and
Algorithms. Reading, Mass.: Addison-Wesley, 1983.

[2] Lewis, T. G., and M. Z. Smith. Applying Data Structures. Boston: Houghton
Mifflin, 1976.

[3] Reingold, Edward M., and Wilfred J. Hansen.	 Data Structures in Pascal.
Boston: Little, Brown, 1986.

[4] Smith, Harry F. Data Structures: Form and Function. San Diego: Harcourt
Brace Jovanovich, 1987.

[5] Cormen, Thomas H., Charles E. Leison, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. 2nd ed. Cambridge: MIT Press, 2001.

[6] Knuth, Donald E. The Art of Computer Programming. Vol. 3, Sorting and
Searching. Reading, Mass.: Addison-Wesley, 1973.

