APPENDIX 1

1. Pretend, for a moment, that x has a fixed value. Let’s denote this fixed value by x_i (“i” for “initial”). Let’s label the corresponding y-value y_i. The linear equation then reads

$$y_i = mx_i + b.$$

Now, let’s add 1 to the x-value. We do this by replacing x_i in the equation by $x_i + 1$. Let’s call the new y-value y_f (“f” for “final”). The new linear equation is

$$y_f = m(x_i + 1) + b.$$

We can distribute the m on the right-hand side of this equation: $m(x_i + 1) = mx_i + m$. This simplifies the equation to

$$y_f = mx_i + m + b.$$

Now look closely: the right-hand side is just m plus $mx_i + b$ (the order of the terms doesn’t matter). But since $y_i = mx_i + b$, we can substitute this in to get

$$y_f = y_i + m.$$

Okay, let’s recap what happened. After increasing the x-value by one unit (from x_i to $x_i + 1$), the new y-value (y_f) ended up being the initial y-value (y_i) plus the slope m. If m is positive, then y_f is bigger than y_i (the y-value has increased) whereas if it’s negative, y_f is smaller than y_i (the y-value has decreased). That’s the generalized slope interpretation I italicized on page 6.
2. Let’s solve $4x + 370 \leq 400$ using algebra. (Since there aren’t any negative numbers in our inequality the inequality sign gets treated the same as an equals sign.) Ready? Let’s begin.

1. Here’s the starting inequality: $4x + 370 \leq 400$
2. Now subtract 370 from both sides: $4x \leq 30$
3. Finally, divide both sides by 4: $x \leq \frac{30}{4} = 7.5$

3. Here’s how you would “mathematize” this problem. Let p be the total grams of protein eaten in a day, c the total grams of carbs, and f the total grams of fat. The Atwater general factor factor system tells us that the protein contains $4p$ calories, the carbs $4c$ calories, and the fat $9f$ calories. The total calories eaten, T, is then

$$T = 4p + 4c + 9f.$$

This equation is an example of a multilinear function. We’ll discuss these in more detail in the next section. For now note that we can go through the same analysis of capping the total calories, T, to a certain number and then solving for the grams of each macronutrient. For example, capping T at 1,000 yields the inequality

$$4p + 4c + 9f \leq 1,000.$$

If we know two of three variables in this equation we can solve for the remaining variable. For example, if you wanted to stick to a diet low in carbs (say, $c = 150$) and fat (say, $f = 20$), then your diet would have at most 55 grams of protein (i.e., $p \leq 55$).

4. The full RMR_m equation involves four variables. To graph it would require a four-dimensional graph, which we can’t visualize. But if I plug in a height, say, $h = 67$, we get an equation with three variables:

$$RMR_m = 4.5w - 5a + 1070.3.$$

(A1.1)

This equation requires a three-dimensional graph. But that’s okay; we graph in 3D just like we graph in 2D. We first draw the xy-plane on the
Appendix 1

Figure A1.1. The 3D graph of equation (A1.1) for weight values w between 0 and 200 and age values a between 0 and 60.

bottom (like a floor) and then add a third axis going up. Then we plot a bunch of points relative to the origin (defined to be where the upward axis intersects the plane) and connect the dots. Figure A1.1 shows the graph of (A1.1) (called a plane). Planes are multilinear functions (note the lines that make up the edges of the plane in the figure). To illustrate that, notice that setting $w = 0$ gives $\text{RMR}_m = -5a + 1070.3$. This is the downward sloping line (the slope is -5) connecting the points labeled A and B in the figure.

5. Starting from $20 = 0.15r - 8.85$, we…

a. Add 8.85 to both sides: $0.15r = 28.85$,

b. Divide both sides by 0.15: $r = \frac{28.85}{0.15} = 192.3 \approx 192$.

Here \approx means “approximately.” (I’ve put a list of the mathematical symbols in the Glossary of Mathematical Symbols in Appendix A.)
Every polynomial has the form
\[y = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \]
for some numbers \(a_0, a_1, \ldots, a_n\) (we assume \(a_n \neq 0\)), and some non-negative whole number \(n\). The number \(n\) in this equation is called the degree of the polynomial; it’s the highest power of \(x\) present. Table A1.1 gives the general form of polynomials of degree 0 to 3, along with their names and concrete examples.

7. To find the answer we set \(MHR = MHR_{pop}\):

\[220 - a = 192 - 0.007a^2. \]

Adding 0.007\(a^2\) to both sides and subtracting 192 from both sides yields

\[0.007a^2 - a + 28 = 0. \]

The fastest way to solve this is to use the quadratic formula, which says that the solutions to \(Ax^2 + Bx + C = 0\) are

\[x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}. \]

The \(\pm\) symbol means “plus or minus” (see the Glossary of Mathematical Symbols in Appendix A). It tells us to write down two solutions: one that uses the + sign and another that uses the − sign. Comparing \(Ax^2 + Bx + C = 0\) to 0.007\(a^2\) − \(a + 28 = 0\), we see that \(A = 0.007\),
Appendix 1 • 17

\(B = -1 \), and \(C = 28 \) (and \(x = a \)). The quadratic formula then gives the two solutions
\[
 a = \frac{20(25 - 3\sqrt{15})}{7} \approx 38.2, \quad a = \frac{20(25 + 3\sqrt{15})}{7} \approx 104.6.
\]
The first solution is the age (\(a \)-value) of the visible intersection point in Figure 1.2(b); the other solution corresponds to the other intersection point (not shown on the graph).

8. I’ll show you how to mathematize this using Jason’s ACB equation. Let \(t \) be the number of minutes it takes him to burn \(c \) calories. This means that
\[
 \text{ACB} = \frac{c}{t},
\]
since ACB is the aerobic caloric burn per minute. This, together with Jason’s ACB equation implies that
\[
 \frac{c}{t} = 0.15r - 8.85.
\]
Since Jason’s MHR is about 192 bpm, then \(x\% \) of that is \(\frac{192x}{100} \). (For example, to find 50\% of his MHR we’d first divide 50 by 100 and then multiply the result by 192.) Thus, Jason will be exercising at this heart rate:
\[
 r = \frac{192x}{100}.
\]
Inserting this into the previous equation yields
\[
 \frac{c}{t} = 0.15 \left(\frac{192x}{100} \right) - 8.85 \Rightarrow \frac{c}{t} = 0.228x - 8.85.
\]
To solve for \(t \) we take the reciprocal of both sides (the reciprocal of \(\frac{a}{b} \) is \(\frac{b}{a} \)) and then multiply both sides by \(c \):
\[
 t = \frac{c}{0.228x - 8.85}.
\]
For example, if Jason wanted to burn 400 calories (\(c = 400 \)) by exercising at 70\% (\(x = 70 \)) of his MHR, this analysis estimates it would take him about \(t \approx 46 \) minutes.