
C H A P T E R O N E

The Confluence of Nature
and Mathematical Modeling

Great are the works of the Lord; they are pondered
by all who delight in them.

—Psalm 111:2

CONFLUENCE . . .

In recent years, as I have walked daily to and from work, I have started
to train myself to observe the sky, the birds, butterflies, trees, and flowers,
something I had not done previously in a conscious way (although I did
watch out for fast-moving cars and unfriendly dogs). Despite living in sub-
urbia, I find that there are many wonderful things to see: clouds exhibiting
wave-like patterns, splotches of colored light some 22 degrees away from
the sun (sundogs, or parhelia), wave after wave of Canada geese in “vee”
formation, the way waves (and a following region of calm water) spread
out on the surface of a puddle as a raindrop spoils its smooth surface, the
occasional rainbow arc, even the iridescence on the neck of those rather
annoying birds, pigeons, and many, many more nature-given delights. And
so far I have not been late for my first class of the morning!

The idea for this book was driven by a fascination on my part for the
way in which so many of the beautiful phenomena observable in the nat-
ural realm around us can be described in mathematical terms (at least in
principle). What are some of these phenomena? Some have been already
mentioned in the preface, but for a more complete list we might consider
rainbows, “glories,” halos (all atmospheric occurrences), waves in air, earth,
oceans, rivers, lakes, and puddles (made by wind, ship, or duck), cloud
formations (billows, lee waves), tree and leaf branching patterns (includ-
ing phyllotaxis), the proportions of trees, the wind in the trees, mud-crack
patterns, butterfly markings, leopard spots, and tiger stripes. In short, if
you can see it outside, and a human didn’t make it, it’s probably described
here! That, of course, is an exaggeration, but this book does attempt to
answer on varied levels the fundamental question: what kind of scientific
and mathematical principles undergird these patterns or regularities that I
claim are so ubiquitous in nature?
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Two of the most fundamental and widespread phenomena that occur
in the realm of nature are the scattering of light and wave motion. Both
may occur almost anywhere given the right circumstances, and both may
be described in mathematical terms at varying levels of complexity. It is,
for example, the scattering of light both by air molecules and by the much
larger dust particles (or more generally, aerosols) that gives the amazing
range of color, hues, and tints at sunrise or sunset that give us so much
pleasure. The deep blue sky above and the red glow near the sun at the end
of the day are due to molecular scattering of light, though dust or volcanic
ash can render the latter quite spectacular at times.

The rainbow is formed by sunlight scattered in preferential directions
by near-spherical raindrops: scattering in this context means refraction and
reflection (although there many other fascinating features of light scattering
that will not be discussed in great detail here). Using a simple mathematical
description of this phenomenon, René Descartes in 1637 was able to “hang
the rainbow in the sky” (i.e., deduce its location relative to the sun and
observer), but to “paint” the rainbow required the genius of Isaac Newton
some thirty years later. The bright primary and fainter secondary bows are
well described by elementary mathematics, but the more subtle observable
features require some of the most sophisticated techniques of mathematical
physics to explain them. A related phenomenon is that of the “glory,” the
set of colored, concentric rainbow-like rings surrounding, for example, the
shadow of an airplane on a cloud below. This, like the rainbow, is also a
“backscatter” effect, and, intriguingly, both the rainbow and the glory have
their counterparts in atomic and nuclear physics; mathematics is a unifying
feature between these two widely differing contexts. The beautiful (and
commonly circular) arcs known as halos, no doubt seen best in arctic climes,
are formed by the refraction of sunlight through ice crystals of various
shapes in the upper atmosphere. Sundogs, those colored splashes of light
often seen on both sides of the sun when high cirrus clouds are present, are
similarly formed.

Like the scattering of light, wave motion is ubiquitous, though we cannot
always see it directly. It is manifested in the atmosphere, for example, by
billow clouds and lee-wave clouds downwind from a hill or mountain.
Waves on the surface of puddles, ponds, lakes, or oceans are governed
by mathematical relationships between their speed, their wavelength, and
the depth of the water. The wakes produced by ships or ducks generate
strikingly similar patterns relative to their size; again, this correspondence
is described by mathematical expressions of the physical laws that govern
the motion. The situation is even more complex in the atmosphere: the
“compressible” nature of a gas renders other types of wave motion possible.
Sand dunes are another complex and beautiful example of waves. They can
occur on a scale of centimeters to kilometers, and, like surface waves on
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bodies of water, it is only the waveform that actually moves; the body of
sand is stationary (except at the surface).

In the plant world, the arrangement of leaves around a stem or seeds
in a sunflower or daisy face shows, in the words of one mathematician
(H.S.M. Coxeter), “a fascinatingly prevalent tendency” to form recurring
numerical patterns, studied since medieval times. Indeed, these patterns
are intimately linked with the “golden number” ((1 + √

5)/2 ≈ 1.618)

so beloved of Greek mathematicians long ago. The spiral arrangement of
seeds in the daisy head is found to be present in the sweeping curve of
the chambered nautilus shell and on its helical counterpart, the Cerithium
fasciatum (a thin, pointy shell). The curl of a drying fern and the rolled-up
tail of a chameleon all exhibit types of spiral arc.

In the animal and insect kingdoms, coat patterns (e.g., on leopards, chee-
tahs, tigers, and giraffes) and wing markings (e.g., on butterflies and moths)
can be studied using mathematics, specifically by means of the properties
and solutions of so-called reaction-diffusion equations (and other types of
mathematical models). Reaction-diffusion equations describe the interac-
tions between chemicals (“activators” and “inhibitors”) that, depending on
conditions, may produce spots, stripes, or more “splodgy” patterns. There
are fascinating mathematical problems involved in this subject area, and
also links with topics such as patterns on fish (e.g., angel fish) and seashells.
In view of earlier comments, seashells combine both the effects of geometry
and pattern formation mechanisms, and mathematical models can repro-
duce the essential features observed in many seashells.

Cracks also, whether formed in drying mud, tree bark, or rapidly cooling
rock, have their own distinctive mathematical patterns; frequently they are
hexagonal in nature. River meanders, far from being “accidents” of nature,
define a form in which the river does the least work in turning (according
to one class of models), which then defines the most probable form a river
can take—no river, regardless of size, runs straight for more than ten times
its average width.

Many other authors have written about these patterns in nature. Ian
Stewart has noted in his popular book Nature’s Numbers that “We live in
a universe of patterns. . . . No two snowflakes appear to be the same, but
all possess six-fold symmetry.” Furthermore, he states that

there is a formal system of thought for recognizing, classifying and
exploiting patterns. . . . It is called mathematics. Mathematics helps us
to organize and systemize our ideas about patterns; in so doing, not
only can we admire and enjoy these patterns, but also we can use them
to infer some of the underlying principles that govern the world of
nature. . . . There is much beauty in nature’s clues, and we can all rec-
ognize it without any mathematical training. There is beauty too in the
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mathematical stories that . . . deduce the underlying rules and regular-
ities, but it is a different kind of beauty, applying to ideas rather than
things. Mathematics is to nature as Sherlock Holmes is to evidence.

We may go further by asking questions like those posed by Peter S.
Stevens in his lovely book Patterns in Nature. He asks,

Why does nature appear to use only a few fundamental forms in so
many different contexts? Why does the branching of trees resemble that
of arteries and rivers? Why do crystal grains look like soap bubbles
and the plates of a tortoise shell? Why do some fronds and fern tips
look like spiral galaxies and hurricanes? Why do meandering rivers and
meandering snakes look like the loop patterns in cables? Why do cracks
in mud and markings on a giraffe arrange themselves like films in a froth
of bubbles?

He concludes in part that “among nature’s darlings are spirals, meanders,
branchings, hexagons, and 137.5 degree angles. . . . Nature’s produc-
tions are shoestring operations, encumbered by the constraints of three-
dimensional space, the necessary relations among the size of things, and
an eccentric sense of frugality.

In the book By Nature’s Design, Pat Murphy expresses similar senti-
ments, writing,

Nature, in its elegance and economy, often repeats certain forms and
patterns . . . like the similarity between the spiral pattern in the heart of a
daisy and the spiral of a seashell, or the resemblance between the branch-
ing pattern of a river and the branching pattern of a tree . . . ripples that
flowing water leaves in the mud . . . the tracings of veins in an autumn
leaf . . . the intricate cracking of tree bark . . . the colorful splashings of
lichen on a boulder. . . . The first step to understanding—and one of the
most difficult—is to see clearly. Nature modifies and adapts these basic
patterns as needed, shaping them to the demands of a dynamic environ-
ment. But underlying all the modifications and adaptations is a hidden
unity. Nature invariably seeks to accomplish the most with the least—the
tightest fit, the shortest path, the least energy expended. Once you begin
to see these basic patterns, don’t be surprised if your view of the natural
world undergoes a subtle shift.

Another fundamental (and philosophical) question has been asked by
many—How can it be that mathematics, a product of human thought inde-
pendent of experience, is so admirably adapted to the objects of reality? This
fascinating question I do not address here; let it suffice to note that, hun-
dreds of years ago, Galileo Galilei stated that the Universe “cannot be read
until we have learnt the language and become familiar with the characters
in which it is written. It is written in mathematical language.” Mathematics
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is certainly the language of science, but it is far, far more than a mere tool,
however valuable, for it is of course both a subject and a language in its
own right. But lest any of us should balk at the apparent need for speaking
a modicum of that language in order more fully to appreciate this book,
the following reassuring statement from Albert Einstein, when writing to
a young admirer at junior high school, should be an encouragement. He
wrote “Do not worry about your difficulties in mathematics. I can assure
you that mine are still greater.” Obviously anyone, even scientists of great
genius, can have difficulties in mathematics (one might add that it’s all a
matter of relativity in this regard).

Obviously a significant component of this book is the application of
elementary mathematics to the natural world around us. As I have tried to
show already, there are many mathematical patterns in the natural world
that are accessible to us if we keep our eyes and ears open; indeed, the act of
“asking questions of nature” can lead to many fascinating “thought trails,”
even if we do not always come up with the correct answers. First, though,
let me remind you (unnecessarily, I am sure) that no one has all the answers
to such questions. This is true for me at all times, of course (not just as a
parent and a professor), but especially so in a subject as all-encompassing as
“mathematics in nature.” There will always be “displays” or phenomena in
nature that any given individual will be unable to explain to the satisfaction
of everyone, for the simple reason that none of us is ever in possession of
all the relevant facts, physical intuition, mathematical techniques, or other
requirements to do justice to the observed event. However, this does not
mean that we cannot appreciate the broad principles that are exemplified in
a rainbow, lenticular cloud, river meander, mud crack, or animal pattern.
Most certainly we can.

It is these broad principles—undergirded by mathematics, much of it
quite elementary—that I want us to perceive in a book of this admittedly
rather free-ranging nature. My desire is that by asking mathematical ques-
tions of the phenomena we will gain both some understanding of the sym-
biosis that exists between the basic scientific principles involved and their
mathematical description, and a deeper appreciation for the phenomenon
itself, its beauty (obviously rather subjective), and its relationship to other
events in the natural world around us. I have always found, for example,
that my appreciation for a rainbow is greatly enhanced by my understand-
ing of the mathematics and physics that undergird it (some of the math-
ematics can be extremely advanced; some references to this literature are
provided in the bibliography). It is important to remember that this is a
book on aspects of applied mathematics, and there will be at times some
more advanced and even occasionally rigorous mathematics (in the form
of theorems and sometimes proofs); for the most part, however, the writing
style is intended to be informal. And so now, on to
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. . . MODELING

An important question to be asked at the outset is What is a mathematical
model? One basic answer is that it is the formulation in mathematical terms
of the assumptions and their consequences believed to underlie a particular
“real world” problem. The aim of mathematical modeling is the practi-
cal application of mathematics to help unravel the underlying mechanisms
involved in, for example, economic, physical, biological, or other systems
and processes. Common pitfalls include the indiscriminate, näive, or unin-
formed use of models, but, when developed and interpreted thoughtfully,
mathematical models can provide insight into the nature of the problem,
be useful in interpreting data, and stimulate experiments. There is not nec-
essarily a “right” model, and obtaining results that are consistent with
observations is only a first step; it does not imply that the model is the only
one that applies, or even that it is “correct.” Furthermore, mathematical
descriptions are not explanations, and never on their own can they pro-
vide a complete solution to the biological (or other) problem—often there
may be complementary levels of description possible within the particular
scientific domain. Collaboration with scientists or engineers is needed for
realism and help in modifying the model mechanisms to reflect the science
more accurately. On the other hand, workers in nonmathematical subjects
need to appreciate what mathematics (and its practitioners) can and can-
not do. Inevitably, as always, good communication between the interested
parties is a necessary (but not sufficient) recipe for success.

In the preface mention was made of fundamental steps necessary in devel-
oping a mathematical model (see figure 1.1): formulating a “real world”
problem in mathematical terms using whatever appropriate simplifying
assumptions may be necessary; solving the problem thus posed, or at least
extracting sufficient information from it; and finally interpreting the solu-
tion in the context of the original problem (which as noted above may
include validation of the model by testing both its consistency with known
data and its predictive capability). Thus the art of good modeling relies
on (i) a sound understanding and appreciation of the scientific or other
problem; (ii) a realistic mathematical representation of the important phe-
nomena; (iii) finding useful solutions, preferably quantitative ones; and (iv)
interpretation of the mathematical results—insights, predictions, and so
on. Sometimes the mathematics used can be very simple. The usefulness of
a mathematical model should not be judged by the sophistication of the
mathematics, but by different (and no less demanding) criteria.

Although techniques of statistical analysis may frequently be used in por-
traying and interpreting data, it is important to note two fundamentally
distinct approaches to mathematical modeling, which differ somewhat in
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Figure 1.1. A generic flow chart illustrating stages and levels of mathematical
modeling. Reprinted with permission of Birkhäuser, copyright 1997, from the
book “A Survey of Models for Tumor-Immune System Dynamics,” edited by
J. A. Adam and N. Bellomo.

both mathematical and philosophical characteristics. These are determinis-
tic models and probabilistic or statistical (sometimes referred to as stochas-
tic) models. One’s preference often depends upon the way one has been
trained, which usually determines the way one looks at the world mathe-
matically. Most of this book is written from the deterministic perspective.
A general summary of the philosophy and methodology of this approach
(with many references to applications in cancer biology) may be found in
chapter 2 of the book edited by Adam and Bellomo (1997).

Deterministic models frequently possess the property that a system of
interest (e.g., a population of cells, a mixture of chemicals or enzymes, a
density or pressure imbalance in a gas) can be “observed” mathematically
to evolve away from some initial configuration.

Frequently in deterministic models the assumption is made that the
dependent variables are at least differentiable functions of their argu-
ment(s), and hence continuous. This assumption is quite reasonable when
the magnitude of (say) the population of cells is very much larger than a
typical change (increase or decrease) in the population. For a small tumor
composed of about a billion cells, the individual cell cycles have become
asynchronous, and so on the basis of a simple model the evolution of the
tumor can be reasonably described using the techniques of differential and
integral calculus. The situation is inevitably much more complex than this,
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and many other factors need to be included to derive a realistic model of
tumor growth. Regardless of the complexity, deterministic models may
be used to predict the size (or cell number) of the tumor as a function of
time, in particular, predicting that the tumor will have N(t) cells at time
t. In practice, however, there is an element of uncertainty in every event,
from the growth of a tumor to catching a bus. External factors, usually
beyond our control, play a role in determining the outcome of the event.
Thus diet, fitness, treatment regimen, and mental attitude may contribute
to the eventual outcome for the cancer patient, while the faulty alarm
clock used by the bus driver may influence whether the bus arrives on time.
Similarly, in studying the relation between stature and heredity, differences
in environment and nutrition may be sources of uncertainty in the results.
Stochastic models enable researchers to identify and study many of these
uncertainties.

Note also that in an experiment errors that arise may be classified as
random or systematic. The word error as used here does not mean mistake;
it is introduced into the results by external influences beyond the control
of the experimenter. The static heard when listening to a radio with poor
reception is generally random; the discovery of the 4◦K microwave back-
ground radiation by Arno Penzias and Robert Wilson in 1964 resulted from
systematic error (i.e., no matter what they tried, they could not eradicate
it); and this in turn resulted in confirmation of a prediction by the scien-
tist George Gamow (and others) in 1948. Systematic errors can lead to
new discoveries! Probabilistic or stochastic models incorporate a measure
of uncertainty; for example, they predict the probability that the tumor will
have N(t) cells at time t. Furthermore, if the cell population of interest is
rather small, a typical change in cell number may well be a significant frac-
tion of the total population, and so the “state” of the population must be
represented, say, by an integer-valued random variable.

It has already been noted that mathematical models are not necessarily
“right” (though they may be wrong as a result of ignoring fundamental
processes). One model may be better than another in that it has better
explanatory features: more specific predictions can be made that are subse-
quently confirmed, at least to some degree. Some of the models presented in
this book are still controversial; in particular, the reaction-diffusion models
of pattern formation presented in chapter 14 are not universally accepted
by biomathematicians. There are other models, for example in the study
of wound healing, that utilize more of the mechanical properties of the
medium (skin in this case) and are therefore designated mechanochemi-
cal models (they are not discussed in this book). Some of the models cited
are somewhat elderly or incomplete (or both), examples being those of
sand dune formation and river meanders presented in chapters 6 and 12,
respectively. Indeed, I venture to suggest that all mathematical models are
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flawed to some extent: many by virtue of inappropriate assumptions made
in formulating the model, or (which may amount to the same thing) by
the omission of certain terms in the governing equations, or even by mis-
interpretation of the mathematical conclusions in the original context of
the problem. Occasionally models may be incorrect because of errors in
the mathematical analysis, even if the underlying assumptions are valid.
And, paradoxically, it can happen that even a less accurate model is prefer-
able to a more mathematically sophisticated one; it was the mathematical
statistician John Tukey who stated that “it is better to have an approximate
answer to the right question than an exact answer to the wrong one.”

This is well illustrated by Lee and Fraser in their comparison of the less
accurate Airy theory of the rainbow with the more general and powerful
Mie theory. They write, “Our point here is not that the exact Mie theory
describes the natural rainbow inadequately, but rather that the approxi-
mate Airy theory can describe it quite well. Thus the supposedly outmoded
Airy theory generates a more natural-looking map of real rainbow colors
than Mie theory does, even though Airy theory makes substantial errors in
describing the scattering of monochromatic light by isolated small drops.
As in many hierarchies of scientific models, the virtues of a simpler theory
can, under the right circumstances, outweigh its vices” (italics added).

With such provisos in mind, the aim of this book is not to present thor-
ough mathematical descriptions of many naturally occurring phenomena—
an impossible task—but instead to try to present a compilation and syn-
thesis of several mathematical models that have been developed within
these contexts. The extensive set of references in the bibliography is pro-
vided to encourage the inquisitive reader to pursue the original articles and
books from which these models were first presented. There are undoubtedly
many published papers on these topics of which I am unaware, and which
certainly would have enhanced this book, and for that I must point out,
regrettably, that one has to stop somewhere (the publisher requires it).

The organization of the book is as follows. Chapters 2 and 3 constitute
a rather gentle introduction to the importance and usefulness of estimation
(chapter 2) and the problem of shape, size, and scale, plus an introduction
to the methods of dimensional analysis (chapter 3). It is important to note
that most of the material in these two chapters is mathematically “fuzzy”;
the conclusions drawn are not exact, and cannot be. They are intended
to provide the reader with some guidelines, domains of validity, and basic
principles to be borne in mind when constructing the next level of model, by
which is meant a rather more sophisticated mathematical approach to the
problem of interest, assuming this is appropriate. However, there may on
occasion be specific counterexamples to the conclusions drawn, of the genre
“My uncle smoked two packs of cigarettes every day for seventy years, and
he never developed cancer”; “That tree must have had at least 105 leaves:
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I just raked them all up”; or, perhaps more relevant to chapter 3, “We owned
a horse that could beat any dog running uphill.” Obviously such anecdo-
tal comments, while perhaps true, do not vitiate broad conclusions based
on solid statistical evidence (in the case of cigarette smoking) or general
principles of bioengineering, provided that in each case we operate within
the domains of validity of the underlying assumptions and procedures. The
reader is reminded of the Tukey quote earlier in this section.

The next three chapters (4–6) are of a meteorological character and
include straightforward mathematical (and physical) descriptions of sha-
dow-related phenomena, rainbows, halos, mirages, and some aspects of
clouds, hurricanes, and sand dunes. Chapters 7–9 are fluid dynamical in
nature, introducing aspects of linear and nonlinear wave motion, respec-
tively (chapters 7 and 9), separated by a chapter dealing with the “other
side of the linear coin,” so to speak, namely instability in some of its vari-
ous forms. Chapter 10 examines some of the many properties of the golden
ratio—an irrational number with fascinating connections to the plant world
in particular. The topics of chapter 11 include honeycombs, soap bubbles
(and foam), and mud cracks; they are loosely connected by the continual
search for optimal solutions and principles of minimization that has been
a major theme in mathematical research for millennia.

A not-unrelated theme meanders through part of chapter 12: river
meanders and branching patterns, followed by some arboreal mathemat-
ical models—the application of engineering principles to establish the
height/width relationship for a generic tree, and the “murmur” of the
forest. Basic principles of bird flight are discussed in chapter 13, as is
the underlying fluid dynamical theorem of Bernoulli. The final chapter
contains selected models of pattern formation based on an examination
of the diffusion equation (and related equations). Applications of these
models to animal, insect, and seashell patterns and plankton blooms are
briefly considered, followed by some applications of the diffusion equation
that are primarily of historical interest. A short appendix on fractals is
designed to whet the reader’s appetite for more.

APPENDIX: A MATHEMATICAL MODEL OF SNOWBALL MELTING

The purpose of this appendix is to illustrate some features of mathematical
modeling by means of a simple (some would say silly) example. Before
doing so, however, readers may find helpful the following quotation from
the above-mentioned book, Wind Waves by Blair Kinsman. It identifies
both the importance and the ubiquity of assumptions made in the process
of mathematical modeling.
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In the derivation to follow, it will be assumed that the Earth is flat, the
water is of constant density, that the Coriolis force is negligible, that the
density of the air can be neglected compared with the density of water,
that the body of water is of infinite extent and completely covered by
waves, and that viscosity and surface tension can be neglected. Moreover,
to simplify the problem, it will be assumed that there is no variation
in the wave properties in the y-direction. A few more assumptions will
turn up along the way in deriving the equations to be solved, but the
equations will still be unsolvable in closed form as they will be nonlinear.
(italics added)

The following simplistic problem is expressed in the form of a question
and an unhelpful answer to illustrate the fact that many problems we might
wish to model may be, at best, ill-defined. It is a case study that may be
helpful to the reader in revealing some of the more intuitive aspects of
mathematical modeling.

Q: Half of a snowball melts in an hour. How long will it take for the
remainder to melt?

A: I don’t know.

Why may such a response be justified, at least in part? Because the ques-
tion stated is not a precise one; it is ambiguous. Half of what? The mass
of the snowball or its volume? Under what kinds of assumptions can we
formulate a mathematical model and will it be realistic? This type of prob-
lem is often posed in “Calculus I” textbooks, and as such requires only a
little basic mathematical material, for example, the chain rule and elemen-
tary integration. However, it is what we do with all this that makes it an
interesting and informative exercise in mathematical modeling. There are
several reasonable assumptions that can be made in order to formulate a
model of snowball melting; however, unjustifiable assumptions are also a
possibility! The reader may consider some or all of these to be in the lat-
ter category, but ultimately the test of a model is how well it fits known
data and predicts new phenomena. The model here is less ambitious (and
not a particularly good one either), for we merely wish to illustrate how
one might approach the problem. It can lead to a good discussion in the
classroom setting, especially during the winter. Some plausible assumptions
(and the questions they generate) might be as follows:

i. Assume that the snowball is a sphere of radius r(t) at all times. This is
almost certainly never the case, but the question becomes one of simplicity.
Is the snowball roughly spherical initially? Subsequently? Is there likely to
be preferential warming and melting on one side even if it starts life as a
sphere? The answer to this last question is yes: preferential melting will
probably occur in the direction of direct sunlight unless the snowball is in
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the shade or the sky is uniformly overcast. If we can make this assumption,
then the resulting surface area and volume considerations involve only the
one spatial variable r.

ii. Assume that the density of the snow/ice mixture is constant through-
out the snowball, so there are no differences in “snow-packing.” This
may be reasonable for small snowballs (hand-sized ones), but large ones
formed by rolling will probably become more densely packed as their weight
increases. A major advantage of the constant density assumption is that
the mass (and weight) of the snowball is then directly proportional to its
volume.

iii. Assume that the mass of the snowball decreases at a rate proportional
to its surface area, and only this. This appears to make sense since it is the
outside surface of the snowball that is in contact with the warmer air that
induces melting. In other words, the transfer of heat occurs at the surface.
This assumption in particular will be examined in the light of the model’s
prediction. But even if it is a good assumption to make, is the “constant”
of proportionality really constant? Might it not depend on the humidity
of the air, the angle of incidence and intensity of sunlight, the external
temperature, and so on?

iv. Assume that no external factors change during the “lifetime” of the
snowball. This is related to assumption (iii), and is probably the weakest
of them all; unless the melting time is very much less than a day it is safe
to say that external factors will vary! Obviously the angle and intensity of
sunlight will change over time, and possibly other factors as noted above.
Let us proceed, nevertheless, on the basis of these four assumptions, and
formulate a model by examining some of the mathematical consequences of
these assumptions. We may do so by asking further questions, for example:

i. What are expressions for the mass, volume, and surface area of the
snowball?

ii. How do we formulate the governing equations? What are the appro-
priate initial and/or boundary conditions? How do we incorporate
the information provided?

iii. Can we obtain a solution (analytic, approximate, or numerical) of the
equations?

iv. What is the physical interpretation of the solution and does it make
sense? That is, is it consistent with the information provided and are
the predictions from the model reasonable?

v. Does a unique solution exist?

We will answer questions (i)–(iv) first, and briefly comment on (v) at the
end. It is an important question that is of a more theoretical nature than
the rest, and its consequences are far reaching for models in general. Let
the initial radius of the snowball be r(0) = R. If we denote the uniform
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density of the snowball by ρ, its mass by M(t), and its volume by V(t),
and measure time t in hours, then the mass of the snowball at any time t
is

M(t) = 4
3

πρr3(t). (1)

It follows that the instantaneous rate of change of mass or time derivative is

dM
dt

= 4πρr2 dr
dt

. (2)

By assumption (iii)

dM
dt

= −4πr2k, (3)

where k is a positive constant of proportionality, the negative sign implying
that the mass is decreasing with time! By equating the last two expressions
it follows that

dr
dt

= −k
ρ

= −α, say. (4)

Thus, according to this model, the radius of the snowball decreases uni-
formly with time. Upon integrating this differential equation and invoking
the initial condition we obtain

r(t) = R − αt = R
(

1 − t
tm

)
= 0 when t = R

α
= tm, (5)

where tm is the time for the original snowball to melt, which occurs when its
radius is zero! We do not know the value of α, since that information was
not provided, but we are informed that after one hour half the snowball
has melted, so we have from equation (5) that r(1) = R − α. A sketch of
the linear equation in (5) and use of similar triangles in figure 1.2a shows
that

tm = R
R − r(1)

and furthermore
V(1)

V(0)
= 1

2
= r3(1)

R3
,

so that

r(1) = 2−1/3R ≈ 0.79R.

Hence tm ≈ 4.8 hours, so that according to this model the snowball will
take a little less than 4 more hours to melt away completely. This is a rather
long time, and certainly the sun’s position will have changed during that
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r(0) = R

t
0 1 tm

r(1)

r

(a)

t
0 1

V(1)

tm
= R/α

V

(b)

Figure 1.2. The time dependence of the radius r(t) and volume V(t) for the model
of snowball melting.

time (through an arc of roughly 60◦), so in retrospect assumption (iv) is
not really justified. A further implication of equation (5) is that both the
volume and mass of the snowball (by assumption (ii)) decrease like a cubic
polynomial in t, i.e.,

V(t) = V(0)

(
1 − t

tm

)3

.

(See figure 1.2b). Note that V ′(t) < 0 as required, and V ′(tm) = 0. Since
V ′′(t) > 0 it is clear that the snowball melts more quickly at first, when
|V ′| is larger, than at later times, as the value for tm attests. I recall being
told as a child by my mother that “snow waits around for more,” but this
model is hardly a “proof” of that, despite further revelations below! It may
be adequate under some circumstances, but there are obvious deficiencies
given the initial “data” (which to be honest, I invented). What other factors
have been ignored here? Here are some:

We are all familiar with the fact that the consistency of snow varies
depending on whether it is “wet” or “dry”; snowballs are more easily made
with the former (at least, I have found it to be so). Wet snow can be packed
more easily and a layer of ice may be formed on the outside. This can in turn
cool a thin layer of air around the surface, which will insulate (somewhat)
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the snowball from the warmer air beyond that. A nice clean snowball, as
opposed to one made with dirty snow, may be highy reflective of sunlight
(it has a high albedo), and this will reduce the rate of melting further. There
are no doubt several other factors missing.

Some other aspects of the model are more readily appreciated if we gen-
eralize the original problem by suggesting instead that “a fraction β of a
snowball melts in h hours . . . ”. The melting time is then found to be

tm = h

1 − 3
√

1 − β
, (6)

which depends linearly on h and in a monotonically decreasing manner on
β. The dependence on h is not surprising; if a given fraction β melts in half
the time, the total melting time is also halved. For a given value of h, the
dependence on β is also plausible: the larger the fraction that melts in time
h, the shorter the melting time.

A final point concerns question (v) on the existence and uniqueness of
the solution to this mathematical model. While the existence of a solution is
clear in this rather trivial example, it is certainly of fundamental importance
in general terms, as is the uniqueness (or not) of a solution and the stability
of such solution(s) to small variations in the initial and/or boundary con-
ditions. Such considerations are outside the scope and theme of this book,
but the interested reader can find information on these topics by consult-
ing many undergraduate and most graduate texts on ordinary and partial
differential equations. For completeness, we state and apply the relevant
theorem for this particular example, namely:

Theorem: there exists a unique solution to the ordinary differential
equation

dy
dx

= f (x, y)

satisfying the initial condition

y(x0) = y0,

provided that both the function f (x, y) and its partial derivative ∂f /∂y
are continuous functions of x and y in a neighborhood of the initial point
(x0, y0).

In many cases of practical interest, these continuity conditions are satisfied
for all values of (x0, y0).

So what has this to do with our snowball? Everything! Our problem has
reduced to

dr
dt

= f (r, t) ≡ −α, r(0) = r0 ≡ R,
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where α is a positive constant. Since constants and their derivatives are
continuous everywhere (!), the theorem applies, and hence a unique solution
exists for the problem as posed. Of course, like the familiar saying about
snowflakes, the snowball is probably unique as well.

As a final comment, it should be pointed out that in a majority of the
mathematical models that follow in this book, the assumptions and their
consequences will not be formally laid out as they have been in the above
pedagogic example. Indeed, that organizational style is not generally used
(in the author’s experience) even in the modeling literature.




