
1 Measure Theory

The sets whose measure we can define by virtue of the
preceding ideas we will call measurable sets; we do
this without intending to imply that it is not possible
to assign a measure to other sets.

E. Borel, 1898

This chapter is devoted to the construction of Lebesgue measure in Rd

and the study of the resulting class of measurable functions. After some
preliminaries we pass to the first important definition, that of exterior
measure for any subset E of Rd. This is given in terms of approximations
by unions of cubes that cover E. With this notion in hand we can
define measurability and thus restrict consideration to those sets that
are measurable. We then turn to the fundamental result: the collection
of measurable sets is closed under complements and countable unions,
and the measure is additive if the subsets in the union are disjoint.
The concept of measurable functions is a natural outgrowth of the

idea of measurable sets. It stands in the same relation as the concept
of continuous functions does to open (or closed) sets. But it has the
important advantage that the class of measurable functions is closed
under pointwise limits.

1 Preliminaries

We begin by discussing some elementary concepts which are basic to the
theory developed below.
The main idea in calculating the “volume” or “measure” of a subset

of Rd consists of approximating this set by unions of other sets whose
geometry is simple and whose volumes are known. It is convenient to
speak of “volume” when referring to sets in Rd; but in reality it means
“area” in the case d = 2 and “length” in the case d = 1. In the approach
given here we shall use rectangles and cubes as the main building blocks
of the theory: in R we use intervals, while in Rd we take products of
intervals. In all dimensions rectangles are easy to manipulate and have
a standard notion of volume that is given by taking the product of the
length of all sides.
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Next, we prove two simple theorems that highlight the importance of
these rectangles in the geometry of open sets: in R every open set is a
countable union of disjoint open intervals, while in Rd, d ≥ 2, every open
set is “almost” the disjoint union of closed cubes, in the sense that only
the boundaries of the cubes can overlap. These two theorems motivate
the definition of exterior measure given later.

We shall use the following standard notation. A point x ∈ Rd consists
of a d-tuple of real numbers

x = (x1, x2, . . . , xd), xi ∈ R, for i = 1, . . . , d.

Addition of points is componentwise, and so is multiplication by a real
scalar. The norm of x is denoted by |x| and is defined to be the standard
Euclidean norm given by

|x| = (x2
1 + · · ·+ x2

d

)1/2
.

The distance between two points x and y is then simply |x− y|.
The complement of a set E in Rd is denoted by Ec and defined by

Ec = {x ∈ Rd : x /∈ E}.

If E and F are two subsets of Rd, we denote the complement of F in E
by

E − F = {x ∈ Rd : x ∈ E and x /∈ F}.

The distance between two sets E and F is defined by

d(E,F ) = inf |x− y|,

where the infimum is taken over all x ∈ E and y ∈ F .

Open, closed, and compact sets

The open ball in Rd centered at x and of radius r is defined by

Br(x) = {y ∈ Rd : |y − x| < r}.

A subset E ⊂ Rd is open if for every x ∈ E there exists r > 0 with
Br(x) ⊂ E. By definition, a set is closed if its complement is open.
We note that any (not necessarily countable) union of open sets is

open, while in general the intersection of only finitely many open sets
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is open. A similar statement holds for the class of closed sets, if one
interchanges the roles of unions and intersections.
A set E is bounded if it is contained in some ball of finite radius.

A bounded set is compact if it is also closed. Compact sets enjoy the
Heine-Borel covering property:

• Assume E is compact, E ⊂ ⋃αOα, and each Oα is open. Then
there are finitely many of the open sets, Oα1 ,Oα2 , . . . ,OαN , such
that E ⊂ ⋃Nj=1 Oαj .

In words, any covering of a compact set by a collection of open sets
contains a finite subcovering.

A point x ∈ Rd is a limit point of the set E if for every r > 0, the ball
Br(x) contains points of E. This means that there are points in E which
are arbitrarily close to x. An isolated point of E is a point x ∈ E such
that there exists an r > 0 where Br(x) ∩ E is equal to {x}.
A point x ∈ E is an interior point of E if there exists r > 0 such

that Br(x) ⊂ E. The set of all interior points of E is called the interior
of E. Also, the closure E of the E consists of the union of E and all
its limit points. The boundary of a set E, denoted by ∂E, is defined as
E −E.
Note that the closure of a set is a closed set; every point in E is a

limit point of E; and a set is closed if and only if it contains all its limit
points. Finally, a closed set E is perfect if E does not have any isolated
points.

Rectangles and cubes

A (closed) rectangleR in Rd is given by the product of d one-dimensional
closed and bounded intervals

R = [a1, b1]× [a2, b2]× · · · × [ad, bd],

where aj ≤ bj are real numbers, j = 1, 2, . . . , d. In other words, we have

R = {(x1, . . . , xd) ∈ Rd : aj ≤ xj ≤ bj for all j = 1, 2, . . . , d}.

We remark that in our definition, a rectangle is closed and has sides
parallel to the coordinate axis. In R, the rectangles are precisely the
closed and bounded intervals, while in R2 they are the usual four-sided
rectangles. In R3 they are the closed parallelepipeds.
We say that the lengths of the sides of the rectangle R are b1 −

a1, . . . , bd − ad. The volume of the rectangle R is denoted by |R|, and
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Figure 1. Rectangles in Rd, d = 1, 2, 3

is defined to be

|R| = (b1 − a1) · · · (bd − ad).

Of course, when d = 1 the “volume” equals length, and when d = 2 it
equals area.

An open rectangle is the product of open intervals, and the interior of
the rectangle R is then

(a1, b1)× (a2, b2)× · · · × (ad, bd).

Also, a cube is a rectangle for which b1 − a1 = b2 − a2 = · · · = bd − ad.
So if Q ⊂ Rd is a cube of common side length �, then |Q| = �d.

A union of rectangles is said to be almost disjoint if the interiors of
the rectangles are disjoint.

In this chapter, coverings by rectangles and cubes play a major role,
so we isolate here two important lemmas.

Lemma 1.1 If a rectangle is the almost disjoint union of finitely many
other rectangles, say R =

⋃N
k=1 Rk, then

|R| =
N∑
k=1

|Rk|.
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Proof. We consider the grid formed by extending indefinitely the
sides of all rectangles R1, . . . , RN . This construction yields finitely many
rectangles R̃1, . . . , R̃M , and a partition J1, . . . , JN of the integers between
1 and M , such that the unions

R =
M⋃
j=1

R̃j and Rk =
⋃
j∈Jk

R̃j, for k = 1, . . . , N

are almost disjoint (see the illustration in Figure 2).

RN
R̃M

R1

R2 R̃1 R̃2

R

Figure 2. The grid formed by the rectangles Rk

For the rectangle R, for example, we see that |R| =∑M
j=1 |R̃j|, since

the grid actually partitions the sides of R and each R̃j consists of taking
products of the intervals in these partitions. Thus when adding the
volumes of the R̃j we are summing the corresponding products of lengths
of the intervals that arise. Since this also holds for the other rectangles
R1, . . . , RN , we conclude that

|R| =
M∑
j=1

|R̃j | =
N∑
k=1

∑
j∈Jk

|R̃j | =
N∑
k=1

|Rk|.

A slight modification of this argument then yields the following:
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Lemma 1.2 If R,R1, . . . , RN are rectangles, and R ⊂ ⋃Nk=1 Rk, then

|R| ≤
N∑
k=1

|Rk|.

The main idea consists of taking the grid formed by extending all sides
of the rectangles R,R1, . . . , RN , and noting that the sets corresponding
to the Jk (in the above proof) need not be disjoint any more.

We now proceed to give a description of the structure of open sets in
terms of cubes. We begin with the case of R.

Theorem 1.3 Every open subset O of R can be writen uniquely as a
countable union of disjoint open intervals.

Proof. For each x ∈ O, let Ix denote the largest open interval contain-
ing x and contained in O. More precisely, since O is open, x is contained
in some small (non-trivial) interval, and therefore if

ax = inf{a < x : (a, x) ⊂ O} and bx = sup{b > x : (x, b) ⊂ O}

we must have ax < x < bx (with possibly infinite values for ax and bx).
If we now let Ix = (ax, bx), then by construction we have x ∈ Ix as well
as Ix ⊂ O. Hence

O =
⋃
x∈O

Ix.

Now suppose that two intervals Ix and Iy intersect. Then their union
(which is also an open interval) is contained in O and contains x. Since
Ix is maximal, we must have (Ix ∪ Iy) ⊂ Ix, and similarly (Ix ∪ Iy) ⊂ Iy.
This can happen only if Ix = Iy; therefore, any two distinct intervals in
the collection I = {Ix}x∈O must be disjoint. The proof will be complete
once we have shown that there are only countably many distinct intervals
in the collection I. This, however, is easy to see, since every open interval
Ix contains a rational number. Since different intervals are disjoint, they
must contain distinct rationals, and therefore I is countable, as desired.

Naturally, if O is open and O =
⋃∞
j=1 Ij , where the Ij ’s are disjoint

open intervals, the measure of O ought to be
∑∞
j=1 |Ij |. Since this rep-

resentation is unique, we could take this as a definition of measure; we
would then note that wheneverO1 andO2 are open and disjoint, the mea-
sure of their union is the sum of their measures. Although this provides
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a natural notion of measure for an open set, it is not immediately clear
how to generalize it to other sets in R. Moreover, a similar approach in
higher dimensions already encounters complications even when defining
measures of open sets, since in this context the direct analogue of The-
orem 1.3 is not valid (see Exercise 12). There is, however, a substitute
result.

Theorem 1.4 Every open subset O of Rd, d ≥ 1, can be written as a
countable union of almost disjoint closed cubes.

Proof. We must construct a countable collection Q of closed cubes
whose interiors are disjoint, and so that O =

⋃
Q∈QQ.

As a first step, consider the grid in Rd formed by taking all closed cubes
of side length 1 whose vertices have integer coordinates. In other words,
we consider the natural grid of lines parallel to the axes, that is, the grid
generated by the lattice Zd. We shall also use the grids formed by cubes
of side length 2−N obtained by successively bisecting the original grid.
We either accept or reject cubes in the initial grid as part of Q accord-

ing to the following rule: if Q is entirely contained in O then we accept
Q; if Q intersects both O and Oc then we tentatively accept it; and if Q
is entirely contained in Oc then we reject it.
As a second step, we bisect the tentatively accepted cubes into 2d cubes

with side length 1/2. We then repeat our procedure, by accepting the
smaller cubes if they are completely contained in O, tentatively accepting
them if they intersect both O and Oc, and rejecting them if they are
contained in Oc. Figure 3 illustrates these steps for an open set in R2.

OO

Step 1 Step 2

Figure 3. Decomposition of O into almost disjoint cubes
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This procedure is then repeated indefinitely, and (by construction)
the resulting collection Q of all accepted cubes is countable and consists
of almost disjoint cubes. To see why their union is all of O, we note
that given x ∈ O there exists a cube of side length 2−N (obtained from
successive bisections of the original grid) that contains x and that is
entirely contained in O. Either this cube has been accepted, or it is
contained in a cube that has been previously accepted. This shows that
the union of all cubes in Q covers O.

Once again, if O =
⋃∞
j=1 Rj where the rectangles Rj are almost dis-

joint, it is reasonable to assign to O the measure
∑∞
j=1 |Rj |. This is

natural since the volume of the boundary of each rectangle should be 0,
and the overlap of the rectangles should not contribute to the volume
of O. We note, however, that the above decomposition into cubes is
not unique, and it is not immediate that the sum is independent of this
decomposition. So in Rd, with d ≥ 2, the notion of volume or area, even
for open sets, is more subtle.

The general theory developed in the next section actually yields a
notion of volume that is consistent with the decompositions of open sets
of the previous two theorems, and applies to all dimensions. Before we
come to that, we discuss an important example in R.

The Cantor set

The Cantor set plays a prominent role in set theory and in analysis in
general. It and its variants provide a rich source of enlightening examples.
We begin with the closed unit interval C0 = [0, 1] and let C1 denote

the set obtained from deleting the middle third open interval from [0, 1],
that is,

C1 = [0, 1/3] ∪ [2/3, 1].

Next, we repeat this procedure for each sub-interval of C1; that is, we
delete the middle third open interval. At the second stage we get

C2 = [0, 1/9] ∪ [2/9, 1/3]∪ [2/3, 7/9]∪ [8/9, 1].

We repeat this process for each sub-interval of C2, and so on (Figure 4).
This procedure yields a sequence Ck, k = 0, 1, 2, . . . of compact sets

with

C0 ⊃ C1 ⊃ C2 ⊃ · · · ⊃ Ck ⊃ Ck+1 ⊃ · · · .
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0 11/3

C2

C3

1/9 2/9
2/3

7/9 8/9

0 1/3 2/3 1

C1

0 1

C0

Figure 4. Construction of the Cantor set

The Cantor set C is by definition the intersection of all Ck’s:

C =
∞⋂
k=0

Ck.

The set C is not empty, since all end-points of the intervals in Ck (all k)
belong to C.
Despite its simple construction, the Cantor set enjoys many interest-

ing topological and analytical properties. For instance, C is closed and
bounded, hence compact. Also, C is totally disconnected: given any
x, y ∈ C there exists z /∈ C that lies between x and y. Finally, C is per-
fect: it has no isolated points (Exercise 1).

Next, we turn our attention to the question of determining the “size”
of C. This is a delicate problem, one that may be approached from
different angles depending on the notion of size we adopt. For instance,
in terms of cardinality the Cantor set is rather large: it is not countable.
Since it can be mapped to the interval [0, 1], the Cantor set has the
cardinality of the continuum (Exercise 2).
However, from the point of view of “length” the size of C is small.

Roughly speaking, the Cantor set has length zero, and this follows from
the following intuitive argument: the set C is covered by sets Ck whose
lengths go to zero. Indeed, Ck is a disjoint union of 2k intervals of length
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3−k, making the total length of Ck equal to (2/3)k. But C ⊂ Ck for all
k, and (2/3)k → 0 as k tends to infinity. We shall define a notion of
measure and make this argument precise in the next section.

2 The exterior measure

The notion of exterior measure is the first of two important concepts
needed to develop a theory of measure. We begin with the definition and
basic properties of exterior measure. Loosely speaking, the exterior mea-
surem∗ assigns to any subset of Rd a first notion of size; various examples
show that this notion coincides with our earlier intuition. However, the
exterior measure lacks the desirable property of additivity when taking
the union of disjoint sets. We remedy this problem in the next section,
where we discuss in detail the other key concept of measure theory, the
notion of measurable sets.

The exterior measure, as the name indicates, attempts to describe
the volume of a set E by approximating it from the outside. The set
E is covered by cubes, and if the covering gets finer, with fewer cubes
overlapping, the volume of E should be close to the sum of the volumes
of the cubes.
The precise definition is as follows: if E is any subset of Rd, the

exterior measure1 of E is

(1) m∗(E) = inf
∞∑
j=1

|Qj |,

where the infimum is taken over all countable coverings E ⊂ ⋃∞
j=1 Qj by

closed cubes. The exterior measure is always non-negative but could be
infinite, so that in general we have 0 ≤ m∗(E) ≤ ∞, and therefore takes
values in the extended positive numbers.

We make some preliminary remarks about the definition of the exterior
measure given by (1).

(i) It is important to note that it would not suffice to allow finite sums
in the definition of m∗(E). The quantity that would be obtained if one
considered only coverings of E by finite unions of cubes is in general
larger than m∗(E). (See Exercise 14.)
(ii) One can, however, replace the coverings by cubes, with coverings
by rectangles; or with coverings by balls. That the former alternative

1Some authors use the term outer measure instead of exterior measure.
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yields the same exterior measure is quite direct. (See Exercise 15.) The
equivalence with the latter is more subtle. (See Exercise 26 in Chapter 3.)

We begin our investigation of this new notion by providing examples
of sets whose exterior measures can be calculated, and we check that
the latter matches our intuitive idea of volume (length in one dimension,
area in two dimensions, etc.)

Example 1. The exterior measure of a point is zero. This is clear once
we observe that a point is a cube with volume zero, and which covers
itself. Of course the exterior measure of the empty set is also zero.

Example 2. The exterior measure of a closed cube is equal to its volume.
Indeed, suppose Q is a closed cube in Rd. Since Q covers itself, we must
have m∗(Q) ≤ |Q|. Therefore, it suffices to prove the reverse inequality.
We consider an arbitrary covering Q ⊂ ⋃∞

j=1 Qj by cubes, and note
that it suffices to prove that

(2) |Q| ≤
∞∑
j=1

|Qj |.

For a fixed ε > 0 we choose for each j an open cube Sj which containsQj ,
and such that |Sj | ≤ (1 + ε)|Qj |. From the open covering

⋃∞
j=1 Sj of the

compact set Q, we may select a finite subcovering which, after possibly
renumbering the rectangles, we may write as Q ⊂ ⋃Nj=1 Sj . Taking the
closure of the cubes Sj , we may apply Lemma 1.2 to conclude that |Q| ≤∑N
j=1 |Sj |. Consequently,

|Q| ≤ (1 + ε)
N∑
j=1

|Qj | ≤ (1 + ε)
∞∑
j=1

|Qj|.

Since ε is arbitrary, we find that the inequality (2) holds; thus |Q| ≤
m∗(Q), as desired.

Example 3. If Q is an open cube, the result m∗(Q) = |Q| still holds.
Since Q is covered by its closure Q, and |Q| = |Q|, we immediately see
that m∗(Q) ≤ |Q|. To prove the reverse inequality, we note that if Q0 is
a closed cube contained in Q, then m∗(Q0) ≤ m∗(Q), since any covering
of Q by a countable number of closed cubes is also a covering of Q0 (see
Observation 1 below). Hence |Q0| ≤ m∗(Q), and since we can choose Q0

with a volume as close as we wish to |Q|, we must have |Q| ≤ m∗(Q).
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Example 4. The exterior measure of a rectangle R is equal to its volume.
Indeed, arguing as in Example 2, we see that |R| ≤ m∗(R). To obtain the
reverse inequality, consider a grid in Rd formed by cubes of side length
1/k. Then, if Q consists of the (finite) collection of all cubes entirely
contained in R, and Q′ the (finite) collection of all cubes that intersect
the complement ofR, we first note that R ⊂ ⋃Q∈(Q∪Q′) Q. Also, a simple
argument yields ∑

Q∈Q
|Q| ≤ |R|.

Moreover, there are O(kd−1) cubes2 in Q′, and these cubes have volume
k−d, so that

∑
Q∈Q′ |Q| = O(1/k). Hence∑

Q∈(Q∪Q′)

|Q| ≤ |R|+O(1/k),

and letting k tend to infinity yields m∗(R) ≤ |R|, as desired.

Example 5. The exterior measure of Rd is infinite. This follows from
the fact that any covering of Rd is also a covering of any cube Q ⊂ Rd,
hence |Q| ≤ m∗(Rd). Since Q can have arbitrarily large volume, we must
have m∗(Rd) = ∞.

Example 6. The Cantor set C has exterior measure 0. From the con-
struction of C, we know that C ⊂ Ck, where each Ck is a disjoint union
of 2k closed intervals, each of length 3−k. Consequently, m∗(C) ≤ (2/3)k

for all k, hence m∗(C) = 0.

Properties of the exterior measure

The previous examples and comments provide some intuition underlying
the definition of exterior measure. Here, we turn to the further study of
m∗ and prove five properties of exterior measure that are needed in what
follows.
First, we record the following remark that is immediate from the def-

inition of m∗:

2We remind the reader of the notation f(x) = O(g(x)), which means that |f(x)| ≤
C|g(x)| for some constant C and all x in a given range. In this particular example, there
are fewer than Ckd−1 cubes in question, as k → ∞.
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• For every ε > 0, there exists a covering E ⊂ ⋃∞
j=1 Qj with

∞∑
j=1

m∗(Qj) ≤ m∗(E) + ε.

The relevant properties of exterior measure are listed in a series of
observations.

Observation 1 (Monotonicity) If E1 ⊂ E2, then m∗(E1) ≤ m∗(E2).

This follows once we observe that any covering of E2 by a countable
collection of cubes is also a covering of E1.
In particular, monotonicity implies that every bounded subset of Rd

has finite exterior measure.

Observation 2 (Countable sub-additivity) If E =
⋃∞
j=1 Ej , then

m∗(E) ≤∑∞
j=1 m∗(Ej).

First, we may assume that each m∗(Ej) < ∞, for otherwise the in-
equality clearly holds. For any ε > 0, the definition of the exterior mea-
sure yields for each j a covering Ej ⊂

⋃∞
k=1 Qk,j by closed cubes with

∞∑
k=1

|Qk,j| ≤ m∗(Ej) +
ε

2j
.

Then, E ⊂ ⋃∞
j,k=1 Qk,j is a covering of E by closed cubes, and therefore

m∗(E) ≤
∑
j,k

|Qk,j | =
∞∑
j=1

∞∑
k=1

|Qk,j |

≤
∞∑
j=1

(
m∗(Ej) +

ε

2j

)
=

∞∑
j=1

m∗(Ej) + ε.

Since this holds true for every ε > 0, the second observation is proved.

Observation 3 If E ⊂ Rd, then m∗(E) = infm∗(O), where the infi-
mum is taken over all open sets O containing E.
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By monotonicity, it is clear that the inequality m∗(E) ≤ infm∗(O)
holds. For the reverse inequality, let ε > 0 and choose cubes Qj such
that E ⊂ ⋃∞

j=1 Qj, with

∞∑
j=1

|Qj | ≤ m∗(E) +
ε

2
.

Let Q0
j denote an open cube containing Qj, and such that |Q0

j | ≤ |Qj |+
ε/2j+1. Then O =

⋃∞
j=1 Q

0
j is open, and by Observation 2

m∗(O) ≤
∞∑
j=1

m∗(Q0
j) =

∞∑
j=1

|Q0
j |

≤
∞∑
j=1

(
|Qj|+ ε

2j+1

)
≤

∞∑
j=1

|Qj |+ ε

2

≤ m∗(E) + ε.

Hence infm∗(O) ≤ m∗(E), as was to be shown.

Observation 4 If E = E1 ∪E2, and d(E1, E2) > 0, then

m∗(E) = m∗(E1) +m∗(E2).

By Observation 2, we already know that m∗(E) ≤ m∗(E1) +m∗(E2),
so it suffices to prove the reverse inequality. To this end, we first select δ
such that d(E1, E2) > δ > 0. Next, we choose a covering E ⊂ ⋃∞

j=1 Qj by
closed cubes, with

∑∞
j=1 |Qj| ≤ m∗(E) + ε. We may, after subdividing

the cubes Qj, assume that each Qj has a diameter less than δ. In this
case, each Qj can intersect at most one of the two sets E1 or E2. If we
denote by J1 and J2 the sets of those indices j for which Qj intersects
E1 and E2, respectively, then J1 ∩ J2 is empty, and we have

E1 ⊂
∞⋃
j∈J1

Qj as well as E2 ⊂
∞⋃
j∈J2

Qj.



2. The exterior measure 15

Therefore,

m∗(E1) +m∗(E2) ≤
∑
j∈J1

|Qj |+
∑
j∈J2

|Qj|

≤
∞∑
j=1

|Qj|

≤ m∗(E) + ε.

Since ε is arbitrary, the proof of Observation 4 is complete.

Observation 5 If a set E is the countable union of almost disjoint cubes
E =

⋃∞
j=1 Qj, then

m∗(E) =
∞∑
j=1

|Qj |.

Let Q̃j denote a cube strictly contained in Qj such that |Qj | ≤ |Q̃j |+
ε/2j, where ε is arbitrary but fixed. Then, for every N , the cubes
Q̃1, Q̃2, . . . , Q̃N are disjoint, hence at a finite distance from one another,
and repeated applications of Observation 4 imply

m∗

(
N⋃
j=1

Q̃j

)
=

N∑
j=1

|Q̃j | ≥
N∑
j=1

(|Qj | − ε/2j
)
.

Since
⋃N
j=1 Q̃j ⊂ E, we conclude that for every integer N ,

m∗(E) ≥
N∑
j=1

|Qj | − ε.

In the limit as N tends to infinity we deduce
∑∞
j=1 |Qj | ≤ m∗(E) + ε

for every ε > 0, hence
∑∞
j=1 |Qj | ≤ m∗(E). Therefore, combined with

Observation 2, our result proves that we have equality.

This last property shows that if a set can be decomposed into almost
disjoint cubes, its exterior measure equals the sum of the volumes of the
cubes. In particular, by Theorem 1.4 we see that the exterior measure of
an open set equals the sum of the volumes of the cubes in a decomposi-
tion, and this coincides with our initial guess. Moreover, this also yields
a proof that the sum is independent of the decomposition.
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One can see from this that the volumes of simple sets that are cal-
culated by elementary calculus agree with their exterior measure. This
assertion can be proved most easily once we have developed the requisite
tools in integration theory. (See Chapter 2.) In particular, we can then
verify that the exterior measure of a ball (either open or closed) equals
its volume.

Despite observations 4 and 5, one cannot conclude in general that if
E1 ∪E2 is a disjoint union of subsets of Rd, then

(3) m∗(E1 ∪ E2) = m∗(E1) +m∗(E2).

In fact (3) holds when the sets in question are not highly irregular or
“pathological” but are measurable in the sense described below.

3 Measurable sets and the Lebesgue measure

The notion of measurability isolates a collection of subsets in Rd for
which the exterior measure satisfies all our desired properties, including
additivity (and in fact countable additivity) for disjoint unions of sets.
There are a number of different ways of defining measurability, but

these all turn out to be equivalent. Probably the simplest and most
intuitive is the following: A subset E of Rd is Lebesgue measurable,
or simply measurable, if for any ε > 0 there exists an open set O with
E ⊂ O and

m∗(O −E) ≤ ε.

This should be compared to Observation 3, which holds for all sets E.
If E is measurable, we define its Lebesgue measure (or measure)

m(E) by

m(E) = m∗(E).

Clearly, the Lebesgue measure inherits all the features contained in Ob-
servations 1 - 5 of the exterior measure.
Immediately from the definition, we find:

Property 1 Every open set in Rd is measurable.

Our immediate goal now is to gather various further properties of
measurable sets. In particular, we shall prove that the collection of
measurable sets behave well under the various operations of set theory:
countable unions, countable intersections, and complements.
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Property 2 If m∗(E) = 0, then E is measurable. In particular, if F is
a subset of a set of exterior measure 0, then F is measurable.

By Observation 3 of the exterior measure, for every ε > 0 there ex-
ists an open set O with E ⊂ O and m∗(O) ≤ ε. Since (O − E) ⊂ O,
monotonicity implies m∗(O −E) ≤ ε, as desired.
As a consequence of this property, we deduce that the Cantor set C in

Example 6 is measurable and has measure 0.

Property 3 A countable union of measurable sets is measurable.

Suppose E =
⋃∞
j=1 Ej , where each Ej is measurable. Given ε > 0, we

may choose for each j an open set Oj with Ej ⊂ Oj and
m∗(Oj −Ej) ≤ ε/2j. Then the union O =

⋃∞
j=1 Oj is open, E ⊂ O, and

(O − E) ⊂ ⋃∞
j=1(Oj −Ej), so monotonicity and sub-additivity of the

exterior measure imply

m∗(O −E) ≤
∞∑
j=1

m∗(Oj −Ej) ≤ ε.

Property 4 Closed sets are measurable.

First, we observe that it suffices to prove that compact sets are mea-
surable. Indeed, any closed set F can be written as the union of compact
sets, say F =

⋃∞
k=1 F ∩Bk, where Bk denotes the closed ball of radius k

centered at the origin; then Property 3 applies.
So, suppose F is compact (so that in particular m∗(F ) < ∞), and let

ε > 0. By Observation 3 we can select an open set O with F ⊂ O and
m∗(O) ≤ m∗(F ) + ε. Since F is closed, the difference O − F is open,
and by Theorem 1.4 we may write this difference as a countable union
of almost disjoint cubes

O − F =
∞⋃
j=1

Qj .

For a fixed N , the finite union K =
⋃N
j=1 Qj is compact; therefore

d(K,F ) > 0 (we isolate this little fact in a lemma below). Since (K ∪
F ) ⊂ O, Observations 1, 4, and 5 of the exterior measure imply

m∗(O) ≥ m∗(F ) +m∗(K)

= m∗(F ) +
N∑
j=1

m∗(Qj).
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Hence
∑N
j=1 m∗(Qj) ≤ m∗(O)−m∗(F ) ≤ ε, and this also holds in the

limit as N tends to infinity. Invoking the sub-additivity property of the
exterior measure finally yields

m∗(O − F ) ≤
∞∑
j=1

m∗(Qj) ≤ ε,

as desired.

We digress briefly to complete the above argument by proving the
following.

Lemma 3.1 If F is closed, K is compact, and these sets are disjoint,
then d(F,K) > 0.

Proof. Since F is closed, for each point x ∈ K, there exists δx > 0 so
that d(x, F ) > 3δx. Since

⋃
x∈K B2δx(x) coversK, and K is compact, we

may find a subcover, which we denote by
⋃N
j=1 B2δj (xj). If we let δ =

min(δ1, . . . , δN), then we must have d(K,F ) ≥ δ > 0. Indeed, if x ∈ K
and y ∈ F , then for some j we have |xj − x| ≤ 2δj, and by construction
|y − xj| ≥ 3δj. Therefore

|y − x| ≥ |y − xj| − |xj − x| ≥ 3δj − 2δj ≥ δ,

and the lemma is proved.

Property 5 The complement of a measurable set is measurable.

If E is measurable, then for every positive integer n we may choose an
open set On with E ⊂ On and m∗(On −E) ≤ 1/n. The complement Ocn
is closed, hence measurable, which implies that the union S =

⋃∞
n=1 Ocn

is also measurable by Property 3. Now we simply note that S ⊂ Ec, and

(Ec − S) ⊂ (On −E),

such that m∗(Ec − S) ≤ 1/n for all n. Therefore, m∗(Ec − S) = 0, and
Ec − S is measurable by Property 2. Therefore Ec is measurable since
it is the union of two measurable sets, namely S and (Ec − S).

Property 6 A countable intersection of measurable sets is measurable.

This follows from Properties 3 and 5, since

∞⋂
j=1

Ej =

( ∞⋃
j=1

Ecj

)c
.
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In conclusion, we find that the family of measurable sets is closed under
the familiar operations of set theory. We point out that we have shown
more than simply closure with respect to finite unions and intersections:
we have proved that the collection of measurable sets is closed under
countable unions and intersections. This passage from finite operations
to infinite ones is crucial in the context of analysis. We emphasize, how-
ever, that the operations of uncountable unions or intersections are not
permissible when dealing with measurable sets!

Theorem 3.2 If E1, E2, . . ., are disjoint measurable sets, and E =⋃∞
j=1 Ej , then

m(E) =
∞∑
j=1

m(Ej).

Proof. First, we assume further that each Ej is bounded. Then, for
each j, by applying the definition of measurability to Ecj , we can choose
a closed subset Fj of Ej with m∗(Ej − Fj) ≤ ε/2j. For each fixed N ,

the sets F1, . . . , FN are compact and disjoint, so that m
(⋃N

j=1 Fj

)
=∑N

j=1 m(Fj). Since
⋃N
j=1 Fj ⊂ E, we must have

m(E) ≥
N∑
j=1

m(Fj) ≥
N∑
j=1

m(Ej)− ε.

Letting N tend to infinity, since ε was arbitrary we find that

m(E) ≥
∞∑
j=1

m(Ej).

Since the reverse inequality always holds (by sub-additivity in Observa-
tion 2), this concludes the proof when each Ej is bounded.
In the general case, we select any sequence of cubes {Qk}∞k=1 that

increases to Rd, in the sense that Qk ⊂ Qk+1 for all k ≥ 1 and
⋃∞
k=1 Qk =

Rd. We then let S1 = Q1 and Sk = Qk −Qk−1 for k ≥ 2. If we define
measurable sets by Ej,k = Ej ∩ Sk, then

E =
⋃
j,k

Ej,k.

The union above is disjoint and every Ej,k is bounded. Moreover Ej =⋃∞
k=1 Ej,k, and this union is also disjoint. Putting these facts together,
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and using what has already been proved, we obtain

m(E) =
∑
j,k

m(Ej,k) =
∑
j

∑
k

m(Ej,k) =
∑
j

m(Ej),

as claimed.

With this, the countable additivity of the Lebesgue measure on mea-
surable sets has been established. This result provides the necessary
connection between the following:

• our primitive notion of volume given by the exterior measure,

• the more refined idea of measurable sets, and

• the countably infinite operations allowed on these sets.

We make two definitions to state succinctly some further consequences.
If E1, E2, . . . is a countable collection of subsets of Rd that increases

to E in the sense that Ek ⊂ Ek+1 for all k, and E =
⋃∞
k=1 Ek, then we

write Ek ↗ E.
Similarly, if E1, E2, . . . decreases to E in the sense that Ek ⊃ Ek+1 for

all k, and E =
⋂∞
k=1 Ek, we write Ek ↘ E.

Corollary 3.3 Suppose E1, E2, . . . are measurable subsets of Rd.

(i) If Ek ↗ E, then m(E) = limN→∞ m(EN ).

(ii) If Ek ↘ E and m(Ek) < ∞ for some k, then

m(E) = lim
N→∞

m(EN ).

Proof. For the first part, let G1 = E1, G2 = E2 −E1, and in gen-
eral Gk = Ek −Ek−1 for k ≥ 2. By their construction, the sets Gk are
measurable, disjoint, and E =

⋃∞
k=1 Gk. Hence

m(E) =
∞∑
k=1

m(Gk) = lim
N→∞

N∑
k=1

m(Gk) = lim
N→∞

m

(
N⋃
k=1

Gk

)
,

and since
⋃N
k=1 Gk = EN we get the desired limit.

For the second part, we may clearly assume that m(E1) < ∞. Let
Gk = Ek −Ek+1 for each k, so that

E1 = E ∪
∞⋃
k=1

Gk
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is a disjoint union of measurable sets. As a result, we find that

m(E1) = m(E) + lim
N→∞

N−1∑
k=1

(m(Ek)−m(Ek+1))

= m(E) +m(E1)− lim
N→∞

m(EN).

Hence, since m(E1) < ∞, we see that m(E) = limN→∞ m(EN), and the
proof is complete.

The reader should note that the second conclusion may fail without
the assumption thatm(Ek) < ∞ for some k. This is shown by the simple
example when En = (n,∞) ⊂ R, for all n.

What follows provides an important geometric and analytic insight
into the nature of measurable sets, in terms of their relation to open and
closed sets. Its thrust is that, in effect, an arbitrary measurable set can
be well approximated by the open sets that contain it, and alternatively,
by the closed sets it contains.

Theorem 3.4 Suppose E is a measurable subset of Rd. Then, for every
ε > 0:

(i) There exists an open set O with E ⊂ O and m(O −E) ≤ ε.

(ii) There exists a closed set F with F ⊂ E and m(E − F ) ≤ ε.

(iii) If m(E) is finite, there exists a compact set K with K ⊂ E and
m(E −K) ≤ ε.

(iv) If m(E) is finite, there exists a finite union F =
⋃N
j=1 Qj of closed

cubes such that

m(E�F ) ≤ ε.

The notation E�F stands for the symmetric difference between the
sets E and F , defined by E�F = (E − F ) ∪ (F − E), which consists of
those points that belong to only one of the two sets E or F .

Proof. Part (i) is just the definition of measurability. For the second
part, we know that Ec is measurable, so there exists an open set O with
Ec ⊂ O and m(O −Ec) ≤ ε. If we let F = Oc, then F is closed, F ⊂ E,
and E − F = O − Ec. Hence m(E − F ) ≤ ε as desired.
For (iii), we first pick a closed set F so that F ⊂ E and m(E − F ) ≤

ε/2. For each n, we let Bn denote the ball centered at the origin of radius
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n, and define compact sets Kn = F ∩Bn. Then E −Kn is a sequence
of measurable sets that decreases to E − F , and since m(E) < ∞, we
conclude that for all large n one has m(E −Kn) ≤ ε.
For the last part, choose a family of closed cubes {Qj}∞j=1 so that

E ⊂
∞⋃
j=1

Qj and
∞∑
j=1

|Qj | ≤ m(E) + ε/2.

Since m(E) < ∞, the series converges and there exists N > 0 such that∑∞
j=N+1 |Qj| < ε/2. If F =

⋃N
j=1 Qj, then

m(E�F ) = m(E − F ) +m(F −E)

≤ m

( ∞⋃
j=N+1

Qj

)
+m

( ∞⋃
j=1

Qj −E

)

≤
∞∑

j=N+1

|Qj|+
∞∑
j=1

|Qj | −m(E)

≤ ε.

Invariance properties of Lebesgue measure

A crucial property of Lebesgue measure in Rd is its translation-invariance,
which can be stated as follows: if E is a measurable set and h ∈ Rd, then
the set Eh = E + h = {x+ h : x ∈ E} is also measurable, and m(E +
h) = m(E). With the observation that this holds for the special case
when E is a cube, one passes to the exterior measure of arbitrary sets
E, and sees from the definition of m∗ given in Section 2 that m∗(Eh) =
m∗(E). To prove the measurability of Eh under the assumption that E
is measurable, we note that if O is open, O ⊃ E, and m∗(O −E) < ε,
then Oh is open, Oh ⊃ Eh, and m∗(Oh − Eh) < ε.
In the same way one can prove the relative dilation-invariance of

Lebesgue measure. Suppose δ > 0, and denote by δE the set {δx :
x ∈ E}. We can then assert that δE is measurable whenever E is,
and m(δE) = δdm(E). One can also easily see that Lebesgue mea-
sure is reflection-invariant. That is, whenever E is measurable, so is
−E = {−x : x ∈ E} and m(−E) = m(E).
Other invariance properties of Lebesgue measure are in Exercise 7

and 8, and Problem 4 of Chapter 2.
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σ-algebras and Borel sets

A σ-algebra of sets is a collection of subsets of Rd that is closed under
countable unions, countable intersections, and complements.
The collection of all subsets of Rd is of course a σ-algebra. A more

interesting and relevant example consists of all measurable sets in Rd,
which we have just shown also forms a σ-algebra.
Another σ-algebra, which plays a vital role in analysis, is the Borel

σ-algebra in Rd, denoted by BRd , which by definition is the smallest σ-
algebra that contains all open sets. Elements of this σ-algebra are called
Borel sets.
The definition of the Borel σ-algebra will be meaningful once we have

defined the term “smallest,” and shown that such a σ-algebra exists and
is unique. The term “smallest” means that if S is any σ-algebra that
contains all open sets in Rd, then necessarily BRd ⊂ S. Since we observe
that any intersection (not necessarily countable) of σ-algebras is again a
σ-algebra, we may define BRd as the intersection of all σ-algebras that
contain the open sets. This shows the existence and uniqueness of the
Borel σ-algebra.
Since open sets are measurable, we conclude that the Borel σ-algebra

is contained in the σ-algebra of measurable sets. Naturally, we may ask
if this inclusion is strict: do there exist Lebesgue measurable sets which
are not Borel sets? The answer is “yes.” (See Exercise 35.)
From the point of view of the Borel sets, the Lebesgue sets arise as

the completion of the σ-algebra of Borel sets, that is, by adjoining all
subsets of Borel sets of measure zero. This is an immediate consequence
of Corollary 3.5 below.
Starting with the open and closed sets, which are the simplest Borel

sets, one could try to list the Borel sets in order of their complexity. Next
in order would come countable intersections of open sets; such sets are
called Gδ sets. Alternatively, one could consider their complements, the
countable union of closed sets, called the Fσ sets.3

Corollary 3.5 A subset E of Rd is measurable

(i) if and only if E differs from a Gδ by a set of measure zero,

(ii) if and only if E differs from an Fσ by a set of measure zero.

Proof. Clearly E is measurable whenever it satisfies either (i) or (ii),
since the Fσ, Gδ, and sets of measure zero are measurable.

3The terminology Gδ comes from German “Gebiete” and “Durschnitt”; Fσ comes from
French “fermé” and “somme.”
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Conversely, if E is measurable, then for each integer n ≥ 1 we may
select an open set On that contains E, and such that m(On −E) ≤ 1/n.
Then S =

⋂∞
n=1 On is a Gδ that contains E, and (S −E) ⊂ (On − E)

for all n. Therefore m(S −E) ≤ 1/n for all n; hence S −E has exterior
measure zero, and is therefore measurable.
For the second implication, we simply apply part (ii) of Theorem 3.4

with ε = 1/n, and take the union of the resulting closed sets.

Construction of a non-measurable set

Are all subsets of Rd measurable? In this section, we answer this question
when d = 1 by constructing a subset of R which is not measurable.4

This justifies the conclusion that a satisfactory theory of measure cannot
encompass all subsets of R.

The construction of a non-measurable set N uses the axiom of choice,
and rests on a simple equivalence relation among real numbers in [0, 1].
We write x ∼ y whenever x− y is rational, and note that this is an

equivalence relation since the following properties hold:

• x ∼ x for every x ∈ [0, 1]

• if x ∼ y, then y ∼ x

• if x ∼ y and y ∼ z, then x ∼ z.

Two equivalence classes either are disjoint or coincide, and [0, 1] is the
disjoint union of all equivalence classes, which we write as

[0, 1] =
⋃
α

Eα.

Now we construct the set N by choosing exactly one element xα from
each Eα, and setting N = {xα}. This (seemingly obvious) step requires
further comment, which we postpone until after the proof of the following
theorem.

Theorem 3.6 The set N is not measurable.

The proof is by contradiction, so we assume that N is measurable. Let
{rk}∞k=1 be an enumeration of all the rationals in [−1, 1], and consider
the translates

Nk = N + rk.

4The existence of such a set in R implies the existence of corresponding non-measurable
subsets of Rd for each d, as a consequence of Proposition 3.4 in the next chapter.
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We claim that the sets Nk are disjoint, and

(4) [0, 1] ⊂
∞⋃
k=1

Nk ⊂ [−1, 2].

To see why these sets are disjoint, suppose that the intersection
Nk ∩Nk′ is non-empty. Then there exist rationals rk �= r′k and α and
β with xα + rk = xβ + rk′ ; hence

xα − xβ = rk′ − rk.

Consequently α �= β and xα − xβ is rational; hence xα ∼ xβ , which con-
tradicts the fact that N contains only one representative of each equiv-
alence class.
The second inclusion is straightforward since each Nk is contained in

[−1, 2] by construction. Finally, if x ∈ [0, 1], then x ∼ xα for some α, and
therefore x− xα = rk for some k. Hence x ∈ Nk, and the first inclusion
holds.
Now we may conclude the proof of the theorem. If N were measurable,

then so would be Nk for all k, and since the union
⋃∞
k=1 Nk is disjoint,

the inclusions in (4) yield

1 ≤
∞∑
k=1

m(Nk) ≤ 3.

Since Nk is a translate of N , we must have m(Nk) = m(N ) for all k.
Consequently,

1 ≤
∞∑
k=1

m(N ) ≤ 3.

This is the desired contradiction, since neither m(N ) = 0 nor m(N ) > 0
is possible.

Axiom of choice

That the construction of the set N is possible is based on the following
general proposition.

• Suppose E is a set and {Eα} is a collection of non-empty subsets
of E. (The indexing set of α’s is not assumed to be countable.)
Then there is a function α �→ xα (a “choice function”) such that
xα ∈ Eα, for all α.
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In this general form this assertion is known as the axiom of choice.
This axiom occurs (at least implicitly) in many proofs in mathematics,
but because of its seeming intuitive self-evidence, its significance was
not at first understood. The initial realization of the importance of
this axiom was in its use to prove a famous assertion of Cantor, the
well-ordering principle. This proposition (sometimes referred to as
“transfinite induction”) can be formulated as follows.
A set E is linearly ordered if there is a binary relation ≤ such that:

(a) x ≤ x for all x ∈ E.

(b) If x, y ∈ E are distinct, then either x ≤ y or y ≤ x (but not both).

(c) If x ≤ y and y ≤ z, then x ≤ z.

We say that a set E can bewell-ordered if it can be linearly ordered in
such a way that every non-empty subset A ⊂ E has a smallest element
in that ordering (that is, an element x0 ∈ A such that x0 ≤ x for any
other x ∈ A).
A simple example of a well-ordered set is Z+, the positive integers with

their usual ordering. The fact that Z+ is well-ordered is an essential part
of the usual (finite) induction principle. More generally, the well-ordering
principle states:

• Any set E can be well-ordered.

It is in fact nearly obvious that the well-ordering principle implies the
axiom of choice: if we well-order E, we can choose xα to be the smallest
element in Eα, and in this way we have constructed the required choice
function. It is also true, but not as easy to show, that the converse impli-
cation holds, namely that the axiom of choice implies the well-ordering
principle. (See Problem 6 for another equivalent formulation of the Ax-
iom of Choice.)
We shall follow the common practice of assuming the axiom of choice

(and hence the validity of the well-ordering principle).5 However, we
should point out that while the axiom of choice seems self-evident the
well-ordering principle leads quickly to some baffling conclusions: one
only needs to spend a little time trying to imagine what a well-ordering
of the reals might look like!

5It can be proved that in an appropriate formulation of the axioms of set theory, the
axiom of choice is independent of the other axioms; thus we are free to accept its validity.
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4 Measurable functions

With the notion of measurable sets in hand, we now turn our attention
to the objects that lie at the heart of integration theory: measurable
functions.
The starting point is the notion of a characteristic function of a set

E, which is defined by

χE(x) =
{

1 if x ∈ E,
0 if x /∈ E.

The next step is to pass to the functions that are the building blocks of
integration theory. For the Riemann integral it is in effect the class of
step functions, with each given as a finite sum

(5) f =
N∑
k=1

akχRk ,

where each Rk is a rectangle, and the ak are constants.

However, for the Lebesgue integral we need a more general notion, as
we shall see in the next chapter. A simple function is a finite sum

(6) f =
N∑
k=1

akχEk

where each Ek is a measurable set of finite measure, and the ak are
constants.

4.1 Definition and basic properties

We begin by considering only real-valued functions f on Rd, which we
allow to take on the infinite values +∞ and −∞, so that f(x) belongs
to the extended real numbers

−∞ ≤ f(x) ≤ ∞.

We shall say that f is finite-valued if −∞ < f(x) < ∞ for all x. In
the theory that follows, and the many applications of it, we shall almost
always find ourselves in situations where a function takes on infinite
values on at most a set of measure zero.
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A function f defined on a measurable subset E of Rd is measurable,
if for all a ∈ R, the set

f−1([−∞, a)) = {x ∈ E : f(x) < a}

is measurable. To simplify our notation, we shall often denote the set
{x ∈ E : f(x) < a} simply by {f < a} whenever no confusion is possible.

First, we note that there are many equivalent definitions of measurable
functions. For example, we may require instead that the inverse image of
closed intervals be measurable. Indeed, to prove that f is measurable if
and only if {x : f(x) ≤ a} = {f ≤ a} is measurable for every a, we note
that in one direction, one has

{f ≤ a} =
∞⋂
k=1

{f < a+ 1/k},

and recall that the countable intersection of measurable sets is measur-
able. For the other direction, we observe that

{f < a} =
∞⋃
k=1

{f ≤ a− 1/k}.

Similarly, f is measurable if and only if {f ≥ a} (or {f > a}) is measur-
able for every a. In the first case this is immediate from our definition
and the fact that {f ≥ a} is the complement of {f < a}, and in the sec-
ond case this follows from what we have just proved and the fact that
{f ≤ a} = {f > a}c. A simple consequence is that −f is measurable
whenever f is measurable.
In the same way, one can show that if f is finite-valued, then it is

measurable if and only if the sets {a < f < b} are measurable for every
a, b ∈ R. Similar conclusions hold for whichever combination of strict or
weak inequalities one chooses. For example, if f is finite-valued, then it
is measurable if and only if {a ≤ f < b} for all a, b ∈ R. By the same
arguments one sees the following:

Property 1 The finite-valued function f is measurable if and only if
f−1(O) is measurable for every open set O, and if and only if f−1(F ) is
measurable for every closed set F .

Note that this property also applies to extended-valued functions, if we
make the additional hypothesis that both f−1(∞) and f−1(−∞) are
measurable sets.
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Property 2 If f is continuous on Rd, then f is measurable. If f is mea-
surable and finite-valued, and Φ is continuous, then Φ ◦ f is measurable.

In fact, Φ is continuous, so Φ−1((−∞, a)) is an open set O, and hence
(Φ ◦ f)−1((−∞, a)) = f−1(O) is measurable.
It should be noted, however, that in general it is not true that

f ◦ Φ is measurable whenever f is measurable and Φ is continuous. See
Exercise 35.

Property 3 Suppose {fn}∞n=1 is a sequence of measurable functions.
Then

sup
n

fn(x), inf
n
fn(x), lim sup

n→∞
, fn(x) and lim inf

n→∞
fn(x)

are measurable.

Proving that supn fn is measurable requires noting that {supn fn > a} =⋃
n{fn > a}. This also yields the result for infn fn(x), since this quantity

equals − supn(−fn(x)).
The result for the limsup and liminf also follows from the two obser-

vations

lim sup
n→∞

fn(x) = inf
k
{sup
n≥k

fn} and lim inf
n→∞

fn(x) = sup
k
{ inf
n≥k

fn}.

Property 4 If {fn}∞n=1 is a collection of measurable functions, and

lim
n→∞

fn(x) = f(x),

then f is measurable.

Since f(x) = lim supn→∞ fn(x) = lim infn→∞ fn(x), this property is a
consequence of property 3.

Property 5 If f and g are measurable, then

(i) The integer powers fk, k ≥ 1 are measurable.

(ii) f + g and fg are measurable if both f and g are finite-valued.

For (i) we simply note that if k is odd, then {fk > a} = {f > a1/k}, and
if k is even and a ≥ 0, then {fk > a} = {f > a1/k} ∪ {f < −a1/k}.
For (ii), we first see that f + g is measurable because

{f + g > a} =
⋃
r∈Q

{f > a− r} ∩ {g > r},
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with Q denoting the rationals.
Finally, fg is measurable because of the previous results and the fact

that

fg =
1
4
[(f + g)2 + (f − g)2].

We shall say that two functions f and g defined on a set E are equal
almost everywhere, and write

f(x) = g(x) a.e. x ∈ E,

if the set {x ∈ E : f(x) �= g(x)} has measure zero. We sometimes ab-
breviate this by saying that f = g a.e. More generally, a property or
statement is said to hold almost everywhere (a.e.) if it is true except on
a set of measure zero.
One sees easily that if f is measurable and f = g a.e., then g is measur-

able. This follows at once from the fact that {f < a} and {g < a} differ
by a set of measure zero. Moreover, all the properties above can be re-
laxed to conditions holding almost everywhere. For instance, if {fn}∞n=1

is a collection of measurable functions, and

lim
n→∞

fn(x) = f(x) a.e.,

then f is measurable.

Note that if f and g are defined almost everywhere on a measurable
subset E ⊂ Rd, then the functions f + g and fg can only be defined on
the intersection of the domains of f and g. Since the union of two sets of
measure zero has again measure zero, f + g is defined almost everywhere
on E. We summarize this discussion as follows.

Property 6 Suppose f is measurable, and f(x) = g(x) for a.e. x. Then
g is measurable.

In this light, Property 5 (ii) also holds when f and g are finite-valued
almost everywhere.

4.2 Approximation by simple functions or step functions

The theorems in this section are all of the same nature and provide
further insight in the structure of measurable functions. We begin by
approximating pointwise, non-negative measurable functions by simple
functions.
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Theorem 4.1 Suppose f is a non-negative measurable function on Rd.
Then there exists an increasing sequence of non-negative simple functions
{ϕk}∞k=1 that converges pointwise to f , namely,

ϕk(x) ≤ ϕk+1(x) and lim
k→∞

ϕk(x) = f(x), for all x.

Proof. We begin first with a truncation. For k ≥ 1, let Qk denote the
cube centered at the origin and of side length k. Then we define

Fk(x) =

 f(x) if x ∈ Qk and f(x) ≤ k,
k if x ∈ Qk and f(x) > k,
0 otherwise.

Then, Fk(x) → f(x) as k tends to infinity for all x. Now, we partition
the range of Fk, namely [0, k], as follows. For fixed k, j ≥ 1, we define

E�,j =
{
x ∈ Qk :

�

j
< Fk(x) ≤ �+ 1

j

}
, for 0 ≤ � < kj.

Then we may form

Fk,j(x) =
∑
�

�

j
χE�,j (x).

Each Fk,j is a simple function that satisfies 0 ≤ Fk(x)− Fk,j(x) ≤ 1/j
for all x. If we now choose j = k, and let ϕk = Fk,k, then we see that
0 ≤ Fk(x)− ϕk(x) ≤ 1/k for all x, and {ϕk} satisfies all the desired prop-
erties.

Note that the result holds for non-negative functions that are extended-
valued, if the limit +∞ is allowed. We now drop the assumption that f
is non-negative, and also allow the extended limit −∞.

Theorem 4.2 Suppose f is measurable on Rd. Then there exists a se-
quence of simple functions {ϕk}∞k=1 that satisfies

|ϕk(x)| ≤ |ϕk+1(x)| and lim
k→∞

ϕk(x) = f(x), for all x.

In particular, we have |ϕk(x)| ≤ |f(x)| for all x and k.
Proof. We use the following decomposition of the function f : f(x) =

f+(x)− f−(x), where

f+(x) = max(f(x), 0) and f−(x) = max(−f(x), 0).
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Since both f+ and f− are non-negative, the previous theorem yields
two increasing sequences of non-negative simple functions {ϕ(1)

k (x)}∞k=1

and {ϕ(2)
k (x)}∞k=1 which converge pointwise to f+ and f−, respectively.

Then, if we let

ϕk(x) = ϕ
(1)
k (x)− ϕ

(2)
k (x),

we see that ϕk(x) converges to f(x) for all x. Finally, the sequence {|ϕk|}
is increasing because the definition of f+, f− and the properties of ϕ(1)

k

and ϕ
(2)
k imply that

|ϕk(x)| = ϕ
(1)
k (x) + ϕ

(2)
k (x).

We may now go one step further, and approximate by step functions.
Here, in general, the convergence may hold only almost everywhere.

Theorem 4.3 Suppose f is measurable on Rd. Then there exists a se-
quence of step functions {ψk}∞k=1 that converges pointwise to f(x) for
almost every x.

Proof. By the previous result, it suffices to show that if E is a
measurable set with finite measure, then f = χE can be approximated
by step functions. To this end, we recall part (iv) of Theorem 3.4,
which states that for every ε there exist cubes Q1, . . . , QN such that
m(E�⋃Nj=1 Qj) ≤ ε. By considering the grid formed by extending the
sides of these cubes, we see that there exist almost disjoint rectangles
R̃1, . . . , R̃M such that

⋃N
j=1 Qj =

⋃M
j=1 R̃j. By taking rectangles Rj con-

tained in R̃j , and slightly smaller in size, we find a collection of disjoint
rectangles that satisfy m(E�⋃Mj=1 Rj) ≤ 2ε. Therefore

f(x) =
M∑
j=1

χRj (x),

except possibly on a set of measure ≤ 2ε. Consequently, for every k ≥ 1,
there exists a step function ψk(x) such that if

Ek = {x : f(x) �= ψk(x)},
then m(Ek) ≤ 2−k. If we let FK =

⋃∞
j=K+1 Ej and F =

⋂∞
K=1 FK , then

m(F ) = 0 since m(FK) ≤ 2−K , and ψk(x) → f(x) for all x in the com-
plement of F , which is the desired result.
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4.3 Littlewood’s three principles

Although the notions of measurable sets and measurable functions rep-
resent new tools, we should not overlook their relation to the older con-
cepts they replaced. Littlewood aptly summarized these connections in
the form of three principles that provide a useful intuitive guide in the
initial study of the theory.

(i) Every set is nearly a finite union of intervals.

(ii) Every function is nearly continuous.

(iii) Every convergent sequence is nearly uniformly convergent.

The sets and functions referred to above are of course assumed to
be measurable. The catch is in the word “nearly,” which has to be
understood appropriately in each context. A precise version of the first
principle appears in part (iv) of Theorem 3.4. An exact formulation of
the third principle is given in the following important result.

Theorem 4.4 (Egorov) Suppose {fk}∞k=1 is a sequence of measurable
functions defined on a measurable set E with m(E) < ∞, and assume
that fk → f a.e on E. Given ε > 0, we can find a closed set Aε ⊂ E
such that m(E −Aε) ≤ ε and fk → f uniformly on Aε.

Proof. We may assume without loss of generality that fk(x) → f(x)
for every x ∈ E. For each pair of non-negative integers n and k, let

Enk = {x ∈ E : |fj(x)− f(x)| < 1/n, for all j > k}.

Now fix n and note that Enk ⊂ Enk+1, and Enk ↗ E as k tends to infinity.
By Corollary 3.3, we find that there exists kn such that m(E −Enkn) <
1/2n. By construction, we then have

|fj(x)− f(x)| < 1/n whenever j > kn and x ∈ Enkn .

We choose N so that
∑∞
n=N 2−n < ε/2, and let

Ãε =
⋂
n≥N

Enkn .

We first observe that

m(E − Ãε) ≤
∞∑
n=N

m(E −Enkn) < ε/2.
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Next, if δ > 0, we choose n ≥ N such that 1/n < δ, and note that x ∈
Ãε implies x ∈ Enkn . We see therefore that |fj(x)− f(x)| < δ whenever
j > kn. Hence fk converges uniformly to f on Ãε.
Finally, using Theorem 3.4 choose a closed subset Aε ⊂ Ãε withm(Ãε −

Aε) < ε/2. As a result, we have m(E −Aε) < ε and the theorem is
proved.

The next theorem attests to the validity of the second of Littlewood’s
principle.

Theorem 4.5 (Lusin) Suppose f is measurable and finite valued on E
with E of finite measure. Then for every ε > 0 there exists a closed set
Fε, with

Fε ⊂ E, and m(E − Fε) ≤ ε

and such that f |Fε is continuous.

By f |Fε we mean the restriction of f to the set Fε. The conclusion of
the theorem states that if f is viewed as a function defined only on Fε,
then f is continuous. However, the theorem does not make the stronger
assertion that the function f defined on E is continuous at the points of
Fε.

Proof. Let fn be a sequence of step functions so that fn → f a.e.
Then we may find sets En so that m(En) < 1/2n and fn is continuous
outside En. By Egorov’s theorem, we may find a set Aε/3 on which
fn → f uniformly and m(E −Aε/3) ≤ ε/3. Then we consider

F ′ = Aε/3 −
⋃
n≥N

En

for N so large that
∑
n≥N 1/2n < ε/3. Now for every n ≥ N the function

fn is continuous on F ′; thus f (being the uniform limit of {fn}) is also
continuous on F ′. To finish the proof, we merely need to approximate
the set F ′ by a closed set Fε ⊂ F ′ such that m(F ′ − Fε) < ε/3.

5* The Brunn-Minkowski inequality

Since addition and multiplication by scalars are basic features of vector
spaces, it is not surprising that properties of these operations arise in a
fundamental way in the theory of Lebesgue measure on Rd. We have al-
ready discussed in this connection the translation-invariance and relative
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dilation-invariance of Lebesgue measure. Here we come to the study of
the sum of two measurable sets A and B, defined as

A+B = {x ∈ Rd : x = x′ + x′′ with x′ ∈ A and x′′ ∈ B}.

This notion is of importance in a number of questions, in particular in
the theory of convex sets; we shall apply it to the isoperimetric problem
in Chapter 3.
In this regard the first (admittedly vague) question we can pose is

whether one can establish any general estimate for the measure of A+ B
in terms of the measures of A and B (assuming that these three sets
are measurable). We can see easily that it is not possible to obtain an
upper bound for m(A+B) in terms of m(A) and m(B). Indeed, simple
examples show that we may have m(A) = m(B) = 0 while m(A+B) >
0. (See Exercise 20.)
In the converse direction one might ask for a general estimate of the

form

m(A+B)α ≥ cα (m(A)α +m(B)α) ,

where α is a positive number and the constant cα is independent of A
and B. Clearly, the best one can hope for is cα = 1. The role of the
exponent α can be understood by considering convex sets. Such sets
A are defined by the property that whenever x and y are in A then
the line segment joining them, {xt+ y(1− t) : 0 ≤ t ≤ 1}, also belongs
to A. If we recall the definition λA = {λx, x ∈ A} for λ > 0, we note
that whenever A is convex, then A+ λA = (1 + λ)A. However, m((1 +
λ)A) = (1 + λ)dm(A), and thus the presumed inequality can hold only
if (1 + λ)dα ≥ 1 + λdα, for all λ > 0. Now

(7) (a+ b)γ ≥ aγ + bγ if γ ≥ 1 and a, b ≥ 0,

while the reverse inequality holds if 0 ≤ γ ≤ 1. (See Exercise 38.) This
yields α ≥ 1/d. Moreover, (7) shows that the inequality with the expo-
nent 1/d implies the corresponding inequality with α ≥ 1/d, and so we
are naturally led to the inequality

(8) m(A+B)1/d ≥ m(A)1/d +m(B)1/d.

Before proceeding with the proof of (8), we need to mention a technical
impediment that arises. While we may assume that A and B are mea-
surable, it does not necessarily follow that then A+B is measurable.
(See Exercise 13 in the next chapter.) However it is easily seen that this
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difficulty does not occur when, for example, A and B are closed sets, or
when one of them is open. (See Exercise 19.)
With the above considerations in mind we can state the main result.

Theorem 5.1 Suppose A and B are measurable sets in Rd and their
sum A+B is also measurable. Then the inequality (8) holds.

Let us first check (8) when A and B are rectangles with side lengths
{aj}dj=1 and {bj}dj=1, respectively. Then (8) becomes

(9)

(
d∏
j=1

(aj + bj)

)1/d

≥
(

d∏
j=1

aj

)1/d

+

(
d∏
j=1

bj

)1/d

,

which by homogeneity we can reduce to the special case where aj +
bj = 1 for each j. In fact, notice that if we replace aj, bj by λjaj , λjbj ,
with λj > 0, then both sides of (9) are multiplied by (λ1λ2 · · ·λd)1/d.
We then need only choose λj = (aj + bj)−1. With this reduction, the
inequality (9) is an immediate consequence of the arithmetic-geometric
inequality (Exercise 39)

1
d

d∑
j=1

xj ≥
(

d∏
j=1

xj

)1/d

, for all xj ≥ 0:

we add the two inequalities that result when we set xj = aj and xj = bj ,
respectively.
We next turn to the case when each A and B are the union of finitely

many rectangles whose interiors are disjoint. We shall prove (8) in this
case by induction on the total number of rectangles in A and B. We
denote this number by n. Here it is important to note that the desired
inequality is unchanged when we translate A and B independently. In
fact, replacing A by A+ h and B by B + h′ replaces A+B by A+B +
h+ h′, and thus the corresponding measures remain the same. We now
choose a pair of disjoint rectangles R1 and R2 in the collection making up
A, and we note that they can be separated by a coordinate hyperplane.
Thus we may assume that for some j, after translation by an appropriate
h, R1 lies in A− = A ∩ {xj ≤ 0}, and R2 in A+ = A ∩ {0 ≤ xj}. Observe
also that both A+ and A− contain at least one less rectangle than A does,
and A = A− ∪A+.
We next translate B so that B− = B ∩ {xj ≤ 0} and B+ = B ∩ {xj ≥

0} satisfy

m(B±)
m(B)

=
m(A±)
m(A)

.
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However, A+B ⊃ (A+ + B+) ∪ (A− + B−), and the union on the right
is essentially disjoint, since the two parts lie in different half-spaces.
Moreover, the total number of rectangles in either A+ and B+, or A−
and B− is also less than n. Thus the induction hypothesis applies and

m(A+B) ≥ m(A+ +B+) +m(A− +B−)

≥ (m(A+)1/d +m(B+)1/d
)d

+
(
m(A−)1/d +m(B−)1/d

)d
= m(A+)

[
1 +

(
m(B)
m(A)

)1/d
]d

+m(A−)

[
1 +

(
m(B)
m(A)

)1/d
]d

=
(
m(A)1/d +m(B)1/d

)d
,

which gives the desired inequality (8) when A and B are both finite
unions of rectangles with disjoint interiors.
Next, this quickly implies the result when A and B are open sets of

finite measure. Indeed, by Theorem 1.4, for any ε > 0 we can find unions
of almost disjoint rectangles Aε and Bε, such that Aε ⊂ A, Bε ⊂ B, with
m(A) ≤ m(Aε) + ε and m(B) ≤ m(Bε) + ε. Since A+B ⊃ Aε +Bε, the
inequality (8) for Aε and Bε and a passage to a limit gives the desired
result. From this, we can pass to the case where A and B are arbitrary
compact sets, by noting first that A+B is then compact, and that if
we define Aε = {x : d(x,A) < ε}, then Aε are open, and Aε ↘ A as ε →
0. With similar definitions for Bε and (A+ B)ε, we observe also that
A+B ⊂ Aε +Bε ⊂ (A+B)2ε. Hence, letting ε → 0, we see that (8) for
Aε and Bε implies the desired result for A and B. The general case,
in which we assume that A, B, and A+B are measurable, then follows
by approximating A and B from inside by compact sets, as in (iii) of
Theorem 3.4.

6 Exercises

1. Prove that the Cantor set C constructed in the text is totally disconnected and
perfect. In other words, given two distinct points x, y ∈ C, there is a point z /∈ C
that lies between x and y, and yet C has no isolated points.

[Hint: If x, y ∈ C and |x− y| > 1/3k , then x and y belong to two different intervals
in Ck. Also, given any x ∈ C there is an end-point yk of some interval in Ck that
satisfies x �= yk and |x− yk| ≤ 1/3k .]

2. The Cantor set C can also be described in terms of ternary expansions.



38 Chapter 1. MEASURE THEORY

(a) Every number in [0, 1] has a ternary expansion

x =
∞∑
k=1

ak3
−k, where ak = 0, 1, or 2.

Note that this decomposition is not unique since, for example, 1/3 =
∑∞
k=2 2/3k.

Prove that x ∈ C if and only if x has a representation as above where every
ak is either 0 or 2.

(b) The Cantor-Lebesgue function is defined on C by

F (x) =

∞∑
k=1

bk
2k

if x =
∑∞
k=1 ak3

−k, where bk = ak/2.

In this definition, we choose the expansion of x in which ak = 0 or 2.

Show that F is well defined and continuous on C, and moreover F (0) = 0 as
well as F (1) = 1.

(c) Prove that F : C → [0, 1] is surjective, that is, for every y ∈ [0, 1] there exists
x ∈ C such that F (x) = y.

(d) One can also extend F to be a continuous function on [0, 1] as follows. Note
that if (a, b) is an open interval of the complement of C, then F (a) = F (b).
Hence we may define F to have the constant value F (a) in that interval.

A geometrical construction of F is described in Chapter 3.

3. Cantor sets of constant dissection. Consider the unit interval [0, 1], and
let ξ be a fixed real number with 0 < ξ < 1 (the case ξ = 1/3 corresponds to the
Cantor set C in the text).

In stage 1 of the construction, remove the centrally situated open interval in
[0, 1] of length ξ. In stage 2, remove two central intervals each of relative length ξ,
one in each of the remaining intervals after stage 1, and so on.

Let Cξ denote the set which remains after applying the above procedure indefi-
nitely.6

(a) Prove that the complement of Cξ in [0, 1] is the union of open intervals of
total length equal to 1.

(b) Show directly that m∗(Cξ) = 0.

[Hint: After the kth stage, show that the remaining set has total length = (1− ξ)k.]

4. Cantor-like sets. Construct a closed set Ĉ so that at the kth stage of the
construction one removes 2k−1 centrally situated open intervals each of length �k,
with

�1 + 2�2 + · · ·+ 2k−1�k < 1.

6The set we call Cξ is sometimes denoted by C 1−ξ
2
.
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(a) If �j are chosen small enough, then
∑∞
k=1 2k−1�k < 1. In this case, show

that m(Ĉ) > 0, and in fact, m(Ĉ) = 1−∑∞
k=1 2k−1�k.

(b) Show that if x ∈ Ĉ, then there exists a sequence of points {xn}∞n=1 such
that xn /∈ Ĉ, yet xn → x and xn ∈ In, where In is a sub-interval in the
complement of Ĉ with |In| → 0.

(c) Prove as a consequence that Ĉ is perfect, and contains no open interval.

(d) Show also that Ĉ is uncountable.

5. Suppose E is a given set, and On is the open set:

On = {x : d(x,E) < 1/n}.

Show:

(a) If E is compact, then m(E) = limn→∞m(On).

(b) However, the conclusion in (a) may be false for E closed and unbounded; or
E open and bounded.

6. Using translations and dilations, prove the following: Let B be a ball in Rd of
radius r. Then m(B) = vdr

d, where vd = m(B1), and B1 is the unit ball, B1 =
{x ∈ Rd : |x| < 1}.

A calculation of the constant vd is postponed until Exercise 14 in the next
chapter.

7. If δ = (δ1, . . . , δd) is a d-tuple of positive numbers δi > 0, and E is a subset of
Rd, we define δE by

δE = {(δ1x1, . . . , δdxd) : where (x1, . . . , xd) ∈ E}.

Prove that δE is measurable whenever E is measurable, and

m(δE) = δ1 · · · δdm(E).

8. Suppose L is a linear transformation of Rd. Show that if E is a measurable
subset of Rd, then so is L(E), by proceeding as follows:

(a) Note that if E is compact, so is L(E). Hence if E is an Fσ set, so is L(E).

(b) Because L automatically satisfies the inequality

|L(x)− L(x′)| ≤M |x− x′|

for some M , we can see that L maps any cube of side length � into a
cube of side length cdM�, with cd = 2

√
d. Now if m(E) = 0, there is a

collection of cubes {Qj} such that E ⊂ ⋃j Qj , and
∑
jm(Qj) < ε. Thus

m∗(L(E)) ≤ c′ε, and hence m(L(E)) = 0. Finally, use Corollary 3.5.
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One can show that m(L(E)) = |detL|m(E); see Problem 4 in the next chapter.

9. Give an example of an open set O with the following property: the boundary
of the closure of O has positive Lebesgue measure.

[Hint: Consider the set obtained by taking the union of open intervals which are
deleted at the odd steps in the construction of a Cantor-like set.]

10. This exercise provides a construction of a decreasing sequence of positive
continuous functions on the interval [0, 1], whose pointwise limit is not Riemann
integrable.

Let Ĉ denote a Cantor-like set obtained from the construction detailed in Exer-
cise 4, so that in particular m(Ĉ) > 0. Let F1 denote a piecewise-linear and contin-
uous function on [0, 1], with F1 = 1 in the complement of the first interval removed
in the construction of Ĉ, F1 = 0 at the center of this interval, and 0 ≤ F1(x) ≤ 1 for
all x. Similarly, construct F2 = 1 in the complement of the intervals in stage two of
the construction of Ĉ, with F2 = 0 at the center of these intervals, and 0 ≤ F2 ≤ 1.
Continuing this way, let fn = F1 · F2 · · ·Fn (see Figure 5).

F2

F1

Figure 5. Construction of {Fn} in Exercise 10

Prove the following:

(a) For all n ≥ 1 and all x ∈ [0, 1], one has 0 ≤ fn(x) ≤ 1 and fn(x) ≥ fn+1(x).
Therefore, fn(x) converges to a limit as n→∞ which we denote by f(x).

(b) The function f is discontinuous at every point of Ĉ.

[Hint: Note that f(x) = 1 if x ∈ Ĉ, and find a sequence of points {xn} so
that xn → x and f(xn) = 0.]

Now
∫
fn(x) dx is decreasing, hence

∫
fn converges. However, a bounded func-

tion is Riemann integrable if and only if its set of discontinuities has measure zero.
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(The proof of this fact, which is given in the Appendix of Book I, is outlined in
Problem 4.) Since f is discontinuous on a set of positive measure, we find that f
is not Riemann integrable.

11. Let A be the subset of [0, 1] which consists of all numbers which do not have
the digit 4 appearing in their decimal expansion. Find m(A).

12. Theorem 1.3 states that every open set in R is the disjoint union of open
intervals. The analogue in Rd, d ≥ 2, is generally false. Prove the following:

(a) An open disc in R2 is not the disjoint union of open rectangles.

[Hint: What happens to the boundary of any of these rectangles?]

(b) An open connected set Ω is the disjoint union of open rectangles if and only
if Ω is itself an open rectangle.

13. The following deals with Gδ and Fσ sets.

(a) Show that a closed set is a Gδ and an open set an Fσ.

[Hint: If F is closed, consider On = {x : d(x,F ) < 1/n}.]
(b) Give an example of an Fσ which is not a Gδ .

[Hint: This is more difficult; let F be a denumerable set that is dense.]

(c) Give an example of a Borel set which is not a Gδ nor an Fσ.

14. The purpose of this exercise is to show that covering by a finite number of
intervals will not suffice in the definition of the outer measure m∗.

The outer Jordan content J∗(E) of a set E in R is defined by

J∗(E) = inf
N∑
j=1

|Ij |,

where the inf is taken over every finite covering E ⊂ ⋃Nj=1 Ij , by intervals Ij .

(a) Prove that J∗(E) = J∗(E) for every set E (here E denotes the closure of
E).

(b) Exhibit a countable subset E ⊂ [0, 1] such that J∗(E) = 1 while m∗(E) = 0.

15. At the start of the theory, one might define the outer measure by taking
coverings by rectangles instead of cubes. More precisely, we define

mR
∗ (E) = inf

∞∑
j=1

|Rj |,
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where the inf is now taken over all countable coverings E ⊂ ⋃∞
j=1Rj by (closed)

rectangles.
Show that this approach gives rise to the same theory of measure developed in

the text, by proving that m∗(E) = mR
∗ (E) for every subset E of Rd.

[Hint: Use Lemma 1.1.]

16. The Borel-Cantelli lemma. Suppose {Ek}∞k=1 is a countable family of
measuable subsets of Rd and that

∞∑
k=1

m(Ek) <∞.

Let

E = {x ∈ Rd : x ∈ Ek, for infinitely many k}
= lim sup

k→∞
(Ek).

(a) Show that E is measurable.

(b) Prove m(E) = 0.

[Hint: Write E =
⋂∞
n=1

⋃
k≥nEk.]

17. Let {fn} be a sequence of measurable functions on [0, 1] with |fn(x)| <∞ for
a.e x. Show that there exists a sequence cn of positive real numbers such that

fn(x)

cn
→ 0 a.e. x

[Hint: Pick cn such that m({x : |fn(x)/cn| > 1/n}) < 2−n, and apply the Borel-
Cantelli lemma.]

18. Prove the following assertion: Every measurable function is the limit a.e. of a
sequence of continuous functions.

19. Here are some observations regarding the set operation A+B.

(a) Show that if either A and B is open, then A+B is open.

(b) Show that if A and B are closed, then A+B is measurable.

(c) Show, however, that A+B might not be closed even though A and B are
closed.

[Hint: For (b) show that A+B is an Fσ set.]

20. Show that there exist closed sets A and B with m(A) = m(B) = 0, butm(A+
B) > 0:
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(a) In R, let A = C (the Cantor set), B = C/2. Note that A+B ⊃ [0, 1].

(b) In R2, observe that if A = I × {0} and B = {0} × I (where I = [0, 1]), then
A+B = I × I .

21. Prove that there is a continuous function that maps a Lebesgue measurable
set to a non-measurable set.

[Hint: Consider a non-measurable subset of [0, 1], and its inverse image in C by the
function F in Exercise 2.]

22. Let χ[0,1] be the characteristic function of [0, 1]. Show that there is no every-
where continuous function f on R such that

f(x) = χ[0,1](x) almost everywhere.

23. Suppose f(x, y) is a function on R2 that is separately continuous: for each
fixed variable, f is continuous in the other variable. Prove that f is measurable
on R2.

[Hint: Approximate f in the variable x by piecewise-linear functions fn so that
fn → f pointwise.]

24. Does there exist an enumeration {rn}∞n=1 of the rationals, such that the
complement of

∞⋃
n=1

(
rn − 1

n
, rn +

1

n

)

in R is non-empty?

[Hint: Find an enumeration where the only rationals outside of a fixed bounded
interval take the form rn, with n = m2 for some integer m.]

25. An alternative definition of measurability is as follows: E is measurable if for
every ε > 0 there is a closed set F contained in E with m∗(E − F ) < ε. Show that
this definition is equivalent with the one given in the text.

26. Suppose A ⊂ E ⊂ B, where A and B are measurable sets of finite measure.
Prove that if m(A) = m(B), then E is measurable.

27. Suppose E1 and E2 are a pair of compact sets in Rd with E1 ⊂ E2, and let
a = m(E1) and b = m(E2). Prove that for any c with a < c < b, there is a compact
set E with E1 ⊂ E ⊂ E2 and m(E) = c.

[Hint: As an example, if d = 1 and E is a measurable subset of [0, 1], consider
m(E ∩ [0, t]) as a function of t.]
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28. Let E be a subset of R with m∗(E) > 0. Prove that for each 0 < α < 1, there
exists an open interval I so that

m∗(E ∩ I) ≥ αm∗(I).

Loosely speaking, this estimate shows that E contains almost a whole interval.

[Hint: Choose an open set O that contains E, and such that m∗(E) ≥ αm∗(O).
Write O as the countable union of disjoint open intervals, and show that one of
these intervals must satisfy the desired property.]

29. Suppose E is a measurable subset of R with m(E) > 0. Prove that the
difference set of E, which is defined by

{z ∈ R : z = x− y for some x, y ∈ E},

contains an open interval centered at the origin.
If E contains an interval, then the conclusion is straightforward. In general, one

may rely on Exercise 28.

[Hint: Indeed, by Exercise 28, there exists an open interval I so that m(E ∩ I) ≥
(9/10)m(I). If we denote E ∩ I by E0, and suppose that the difference set of E0

does not contain an open interval around the origin, then for arbitrarily small a the
sets E0, and E0 + a are disjoint. From the fact that (E0 ∪ (E0 + a)) ⊂ (I ∪ (I + a))
we get a contradiction, since the left-hand side has measure 2m(E0), while the
right-hand side has measure only slightly larger than m(I).]

A more general formulation of this result is as follows.

30. If E and F are measurable, and m(E) > 0, m(F ) > 0, prove that

E + F = {x+ y : x ∈ E, x ∈ F}

contains an interval.

31. The result in Exercise 29 provides an alternate proof of the non-measurability
of the set N studied in the text. In fact, we may also prove the non-measurability
of a set in R that is very closely related to the set N .

Given two real numbers x and y, we shall write as before that x ∼ y whenever
the difference x− y is rational. Let N ∗ denote a set that consists of one element in
each equivalence class of ∼. Prove that N ∗ is non-measurable by using the result
in Exercise 29.

[Hint: IfN ∗ is measurable, then so are its translates N ∗
n = N ∗ + rn, where {rn}∞n=1

is an enumeration of Q. How does this imply that m(N ∗) > 0? Can the difference
set of N ∗ contain an open interval centered at the origin?]

32. Let N denote the non-measurable subset of I = [0, 1] constructed at the end
of Section 3.

(a) Prove that if E is a measurable subset of N , then m(E) = 0.
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(b) If G is a subset of R with m∗(G) > 0, prove that a subset of G is non-
measurable.

[Hint: For (a) use the translates of E by the rationals.]

33. Let N denote the non-measurable set constructed in the text. Recall from the
exercise above that measurable subsets of N have measure zero.

Show that the set N c = I −N satisfies m∗(N c) = 1, and conclude that if E1 =
N and E2 = N c, then

m∗(E1) +m∗(E2) �= m∗(E1 ∪ E2),

although E1 and E2 are disjoint.

[Hint: To prove that m∗(N c) = 1, argue by contradiction and pick a measurable
set U such that U ⊂ I , N c ⊂ U and m∗(U) < 1− ε.]

34. Let C1 and C2 be any two Cantor sets (constructed in Exercise 3). Show that
there exists a function F : [0, 1] → [0, 1] with the following properties:

(i) F is continuous and bijective,

(ii) F is monotonically increasing,

(iii) F maps C1 surjectively onto C2.

[Hint: Copy the construction of the standard Cantor-Lebesgue function.]

35. Give an example of a measurable function f and a continuous function Φ so
that f ◦ Φ is non-measurable.

[Hint: Let Φ : C1 → C2 as in Exercise 34, with m(C1) > 0 and m(C2) = 0. Let
N ⊂ C1 be non-measurable, and take f = χΦ(N).]

Use the construction in the hint to show that there exists a Lebesgue measurable
set that is not a Borel set.

36. This exercise provides an example of a measurable function f on [0, 1] such
that every function g equivalent to f (in the sense that f and g differ only on a
set of measure zero) is discontinuous at every point.

(a) Construct a measurable set E ⊂ [0, 1] such that for any non-empty open
sub-interval I in [0, 1], both sets E ∩ I and Ec ∩ I have positive measure.

(b) Show that f = χE has the property that whenever g(x) = f(x) a.e x, then
g must be discontinuous at every point in [0, 1].

[Hint: For the first part, consider a Cantor-like set of positive measure, and add in
each of the intervals that are omitted in the first step of its construction, another
Cantor-like set. Continue this procedure indefinitely.]

37. Suppose Γ is a curve y = f(x) in R2, where f is continuous. Show that
m(Γ) = 0.
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[Hint: Cover Γ by rectangles, using the uniform continuity of f .]

38. Prove that (a+ b)γ ≥ aγ + bγ whenever γ ≥ 1 and a, b ≥ 0. Also, show that
the reverse inequality holds when 0 ≤ γ ≤ 1.

[Hint: Integrate the inequality between (a+ t)γ−1 and tγ−1 from 0 to b.]

39. Establish the inequality

(10)
x1 + · · ·+ xd

d
≥ (x1 · · · xd)1/d for all xj ≥ 0, j = 1, . . . , d

by using backward induction as follows:

(a) The inequality is true whenever d is a power of 2 (d = 2k, k ≥ 1).

(b) If (10) holds for some integer d ≥ 2, then it must hold for d− 1, that is,
one has (y1 + · · ·+ yd−1)/(d− 1) ≥ (y1 · · · yd−1)1/(d−1) for all yj ≥ 0, with
j = 1, . . . , d− 1.

[Hint: For (a), if k ≥ 2, write (x1 + · · ·+ x2k)/2k as (A+B)/2, where A = (x1 +
· · ·+ x2k−1)/2k−1, and apply the inequality when d = 2. For (b), apply the in-
equality to x1 = y1, . . . , xd−1 = yd−1 and xd = (y1 + · · ·+ yd−1)/(d− 1).]

7 Problems

1. Given an irrational x, one can show (using the pigeon-hole principle, for exam-
ple) that there exists infinitely many fractions p/q, with relatively prime integers
p and q such that ∣∣∣∣x− pq

∣∣∣∣ ≤ 1

q2
.

However, prove that the set of those x ∈ R such that there exist infinitely many
fractions p/q, with relatively prime integers p and q such that∣∣∣∣x− pq

∣∣∣∣ ≤ 1

q3
(or ≤ 1/q2+ε),

is a set of measure zero.

[Hint: Use the Borel-Cantelli lemma.]

2. Any open set Ω can be written as the union of closed cubes, so that Ω =
⋃
Qj

with the following properties

(i) The Qj ’s have disjoint interiors.

(ii) d(Qj ,Ω
c) ≈ side length of Qj . This means that there are positive constants

c and C so that c ≤ d(Qj ,Ωc)/�(Qj) ≤ C, where �(Qj) denotes the side
length of Qj .
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3. Find an example of a measurable subset C of [0, 1] such that m(C) = 0, yet the
difference set of C contains a non-trivial interval centered at the origin. Compare
with the result in Exercise 29.

[Hint: Pick the Cantor set C = C. For a fixed a ∈ [−1, 1], consider the line y =
x+ a in the plane, and copy the construction of the Cantor set, but in the cube
Q = [0, 1]× [0, 1]. First, remove all but four closed cubes of side length 1/3, one at
each corner of Q; then, repeat this procedure in each of the remaining cubes (see
Figure 6). The resulting set is sometimes called a Cantor dust. Use the property
of nested compact sets to show that the line intersects this Cantor dust.]

Figure 6. Construction of the Cantor dust

4. Complete the following outline to prove that a bounded function on an interval
[a, b] is Riemann integrable if and only if its set of discontinuities has measure zero.
This argument is given in detail in the appendix to Book I.

Let f be a bounded function on a compact interval J , and let I(c, r) denote
the open interval centered at c of radius r > 0. Let osc(f, c, r) = sup |f(x)− f(y)|,
where the supremum is taken over all x, y ∈ J ∩ I(c, r), and define the oscillation
of f at c by osc(f, c) = limr→0 osc(f, c, r). Clearly, f is continuous at c ∈ J if and
only if osc(f, c) = 0.

Prove the following assertions:

(a) For every ε > 0, the set of points c in J such that osc(f, c) ≥ ε is compact.

(b) If the set of discontinuities of f has measure 0, then f is Riemann integrable.

[Hint: Given ε > 0 let Aε = {c ∈ J : osc(f, c) ≥ ε}. Cover Aε by a finite
number of open intervals whose total length is ≤ ε. Select an appropriate
partition of J and estimate the difference between the upper and lower sums
of f over this partition.]
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(c) Conversely, if f is Riemann integrable on J , then its set of discontinuities
has measure 0.

[Hint: The set of discontinuities of f is contained in
⋃
nA1/n. Choose a

partition P such that U(f, P )− L(f, P ) < ε/n. Show that the total length
of the intervals in P whose interior intersect A1/n is ≤ ε.]

5. Suppose E is measurable with m(E) <∞, and

E = E1 ∪E2, E1 ∩E2 = ∅.
If m(E) = m∗(E1) +m∗(E2), then E1 and E2 are measurable.

In particular, if E ⊂ Q, where Q is a finite cube, then E is measurable if and
only if m(Q) = m∗(E) +m∗(Q−E).

6.∗ The fact that the axiom of choice and the well-ordering principle are equivalent
is a consequence of the following considerations.

One begins by defining a partial ordering on a set E to be a binary relation ≤
on the set E that satisfies:

(i) x ≤ x for all x ∈ E.

(ii) If x ≤ y and y ≤ x, then x = y.

(iii) If x ≤ y and y ≤ z, then x ≤ z.
If in addition x ≤ y or y ≤ x whenever x, y ∈ E, then ≤ is a linear ordering of E.

The axiom of choice and the well-ordering principle are then logically equivalent
to the Hausdorff maximal principle:

Every non-empty partially ordered set has a (non-empty) maximal
linearly ordered subset.

In other words, if E is partially ordered by ≤, then E contains a non-empty subset
F which is linearly ordered by ≤ and such that if F is contained in a set G also
linearly ordered by ≤, then F = G.

An application of the Hausdorff maximal principle to the collection of all well-
orderings of subsets of E implies the well-ordering principle for E. However, the
proof that the axiom of choice implies the Hausdorff maximal principle is more
complicated.

7.∗ Consider the curve Γ = {y = f(x)} in R2, 0 ≤ x ≤ 1. Assume that f is twice
continuously differentiable in 0 ≤ x ≤ 1. Then show that m(Γ + Γ) > 0 if and only
if Γ + Γ contains an open set, if and only if f is not linear.

8.∗ Suppose A and B are open sets of finite positive measure. Then we have
equality in the Brunn-Minkowski inequality (8) if and only if A and B are convex
and similar, that is, there are a δ > 0 and an h ∈ Rd such that

A = δB + h.




