
Chapter One

Mod p Arithmetic, Group Theory and Cryptography

In this chapter we review the basic number theory and group theory which we use
throughout the book, culminating with a proof of quadratic reciprocity. Good in-
troductions to group theory are [J, La3]; see [Da1, IR] for excellent expositions
on congruences and quadratic reciprocity, and [Sil2] for a friendly introduction to
much of the material below. We use cryptographic applications to motivate some
basic background material in number theory; see [Ga] for a more detailed expo-
sition on cryptography and [Lidl, vdP2] for connections with continued fractions.
The guiding principle behind much of this chapter (indeed, much of this book and
number theory) is the search for efficient algorithms. Just being able to write down
an expression does not mean we can evaluate it in a reasonable amount of time.
Thus, while it is often easy to prove a solution exists, doing the computations as
written is sometimes impractical; see Chapter6 of [BB] and [Wilf] for more on
efficient algorithms.

1.1 CRYPTOGRAPHY

Cryptography is the science of encoding information so that only certain specified
people can decode it. We describe some common systems. To prove many of the
properties of these crypto-systems will lead us to some of the basic concepts and
theorems of algebra and group theory.

Consider the following two password systems. In the first we choose two large
distinct primesp andq; for example, let us sayp andq have about200 digits each.
Let N = pq and display the400 digit numberN for everyone to see. The password
is any divisor ofN greater than1 and less thanN . One very important property of
the integers is unique factorization: any integer can be written uniquely as a product
of prime powers. This implies that the only factorizations ofN are1 · N , N · 1,
p · q andq · p. Thus there are two passwords,p andq. For the second system, we
choose a5000 digit number. We keep this number secret; to gain access the user
must input this number.

Which method is more secure? While it is harder to correctly guess5000 digits
then200, there is a danger in the second system: the computer needs to store the
password. As there is no structure to the problem, the computer can only determine
if you have entered the correct number by comparing your5000 digit number to the
one it was told is the password. Thus there is a code-book of sorts, and code-books
can be stolen. In the first system there is no code-book to steal. The computer does
not need to knowp or q: it only needs to knowN and how to divide, and it will



4 CHAPTER 1

know the password when it sees it!
There are so many primes that it is not practical to try all200 digit prime num-

bers. The Prime Number Theorem (Theorem 2.3.7) states that there are approxi-
mately x

log x primes smaller thanx; for x = 10200, this leads to an impractically
large number of numbers to check. What we have is a process which is easy in
one direction (multiplyingp andq), but hard in the reverse (knowingN , right now
there is no “fast” algorithm to findp andq).

It is trivial to write an algorithm which is guaranteed to factorN : simply test
N by all numbers (or all primes) at most

√
N . While this will surely work, this

algorithm is so inefficient that it is useless for such large numbers. This is the first
of many instances where we have an algorithm which will give a solution, but the
algorithm is so slow as to be impractical for applications. Later in this chapter we
shall encounter other situations where we have an initial algorithm that is too slow
but where we can derive faster algorithms.

Exercise 1.1.1.There are approximately1080 elementary objects in the universe
(photons, quarks, et cetera). Assume each such object is a powerful supercomputer
capable of checking1020 numbers a second. How many years would it take to check
all numbers (or all primes) less than

√
10400? What if each object in the universe

was a universe in itself, with1080 supercomputers: how many years would it take
now?

Exercise 1.1.2.Why do we wantp andq to be distinct primes in the first system?

One of the most famous cryptography methods is RSA (see [RSA]). Two people,
usually named Alice and Bob, want to communicate in secret. Instead of sending
words they send numbers that represent words. Let us represent the lettera by
01, b by 02, all the way to representingz by 26 (and we can have numbers repre-
sent capital letters, spaces, punctuation marks, and so on). For example, we write
030120 for the word “cat.” Thus it suffices to find a secure way for Alice to transmit
numbers to Bob. Let us say a message is a numberM of a fixed number of digits.

Bob chooses two large primesp andq and then two numbersd ande such that
(p − 1)(q − 1) dividesed − 1; we explain these choices in §1.5. Bob then makes
publicly available the following information:N = pq ande, but keeps secretp, q
andd. It turns out that this allows Alice to send messages to Bob that only Bob
can easily decipher. If Alice wants to send the messageM < N to Bob, Alice
first calculatesMe, and then sends Bob the remainder after dividing byN ; call this
numberX. Bob then calculatesXd, whose remainder upon dividing byN is the
original messageM ! The proof of this uses modulo (or clock) arithmetic and basic
group theory, which we describe below. Afterwards, we return and prove the claim.

Exercise 1.1.3.Let p = 101, q = 97. Let d = 2807 ande = 23. Show that this
method successfully sends “hi” (0809) to Bob. Note that(0809)23 is a sixty-six
digit number! See Remark 9.5.6 for one way to handle such large numbers.

Exercise(hr) 1.1.4. Use a quadratic polynomialax2 + bx + c to design a security
system satisfying the following constraints:

1. the password is the triple(a, b, c);
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2. each of10 people is given some information such that any three of them can
provide(a, b, c), but no two of them can.

Generalize the construction: consider a polynomial of degreeN such that some
people “know more” than others (for example, one person can figure out the pass-
word with anyone else, another person just needs two people, and so on).

Remark 1.1.5. We shall see another important application of unique factorization
in §3.1.1 when we introduce the Riemann zeta function. Originally defined as an
infinite sum over the integers, by unique factorization we shall be able to express
it as a product over primes; this interplay yields numerous results, among them a
proof of the Prime Number Theorem.

1.2 EFFICIENT ALGORITHMS

For computational purposes, often having an algorithm to compute a quantity is
not enough; we need an algorithm which will compute itquickly. We have seen an
example of this when we tried to factor numbers; while we can factor any number,
current algorithms are so slow that crypto-systems based on “large” primes are
secure. For another example, recall Exercise 1.1.3 where we needed to compute a
sixty-six digit number! Below we study three standard problems and show how to
either rearrange the operations more efficiently or give a more efficient algorithm
than the obvious candidate. See Chapter6 of [BB] and [Wilf] for more on efficient
algorithms.

1.2.1 Exponentiation

Considerxn. The obvious way to calculate it involvesn − 1 multiplications. By
writing n in base two we can evaluatexn in at most2 log2 n steps, an enormous
savings. One immediate application is to reduce the number of multiplications
in cryptography (see Exercise 1.1.3). Another is in §1.2.33, where we derive a
primality test based on exponentiation.

We are used to writing numbers in base 10, say

x = am10m + am−110m−1 + · · ·+ a1101 + a0, ai ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}.
(1.1)

Base two is similar, except each digit is now either 0 or 1. Letk be the largest
integer such that2k ≤ x. Then

x = bk2k + bk−12k−1 + · · ·+ b12 + b0, bi ∈ {0, 1}. (1.2)

It costsk multiplications to evaluatex2i

for all i ≤ k. How? Considery0 = x20
,

y1 = y0 · y0 = x20 · x20
= x21

, y2 = y1 · y1 = x22
, . . . , yk = yk−1 · yk−1 = x2k

.
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To evaluatexn, note

xn = xbk2k+bk−12
k−1+···+b12+b0

= xbk2k · xbk−12
k−1 · · ·xb12 · xb0

=
(
x2k

)bk ·
(
x2k−1

)bk−1 · · · (x2
)b1 · (x1

)b0

= ybk

k · ybk−1
k−1 · · · yb1

1 · yb0
0 . (1.3)

As eachbi ∈ {0, 1}, we have at mostk + 1 multiplications above (ifbi = 1 we
have the termyi in the product, ifbi = 0 we do not). It costsk multiplications to
evaluate thex2i

(i ≤ k), and at most anotherk multiplications to finish calculating
xn. As k ≤ log2 n, we see thatxn can be determined in at most2 log2 n steps.
Note, however, that we do need more storage space for this method, as we need to
store the valuesyi = x2i

, i ≤ log2 n. For n large,2 log2 n is much smaller than
n − 1, meaning there is enormous savings in determiningxn this way. See also
Exercise B.1.13.

Exercise 1.2.1.Show that it is possible to calculatexn storing only two numbers
at any given time (and knowing the base two expansion ofn).

Exercise 1.2.2.Instead of expandingn in base two, expandn in base three. How
many calculations are needed to evaluatexn this way? Why is it preferable to
expand in base two rather than any other base?

Exercise 1.2.3.A better measure of computational complexity is not to treat all
multiplications and additions equally, but rather to count the number of digit op-
erations. For example, in271 × 31 there are six multiplications. We then must
add two three-digit numbers, which involves at most four additions (if we need to
carry). How many digit operations are required to computexn?

1.2.2 Polynomial Evaluation (Horner’s Algorithm)

Let f(x) = anxn + an−1x
n−1 + · · · + a1x + a0. The obvious way to evaluate

f(x) is to calculatexn and multiply byan (n multiplications), calculatexn−1 and
multiply by an−1 (n− 1 multiplications) and add, et cetera. There aren additions
and

∑n
k=0 k multiplications, for a total ofn+ n(n+1)

2 operations. Thus the standard

method leads to aboutn
2

2 computations.

Exercise 1.2.4.Prove by induction (see Appendix A.1) that
∑n

k=0 k = n(n+1)
2 .

In general,
∑n

k=0 kd = pd+1(n), wherepd+1(n) is a polynomial of degreed + 1
with leading termnd+1

d+1 ; one can find the coefficients by evaluating the sums for
n = 0, 1, . . . , d because specifying the values of a polynomial of degreed at d + 1
points uniquely determines the polynomial (see also Exercise 1.1.4). See [Mil4] for
an alternate proof which does not use induction.

Exercise 1.2.5.Notation as in Exercise 1.2.4, use the integral test from calculus to
show the leading term ofpd+1(n) is nd+1

d+1 and bound the size of the error.
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Exercise 1.2.6.How many operations are required if we use our results on expo-
nentiation?

Consider the following grouping to evaluatef(x), known asHorner’s algo-
rithm :

(· · · ((anx + an−1)x + an−2)x + · · ·+ a1) x + a0. (1.4)

For example,

7x4 + 4x3 − 3x2 − 11x + 2 = (((7x + 4)x− 3)x− 11) x + 2. (1.5)

Evaluating term by term takes14 steps; Horner’s Algorithm takes8 steps. One
common application is in fractal geometry, where one needs to iterate polynomials
(see also §1.2.4 and the references there). Another application is in determining
decimal expansions of numbers (see §7.1).

Exercise 1.2.7.Prove Horner’s Algorithm takes at most2n steps to evaluateanxn+
· · ·+ a0.

1.2.3 Euclidean Algorithm

Definition 1.2.8(Greatest Common Divisor). Letx, y ∈ N. The greatest common
divisor of x and y, denoted bygcd(x, y) or (x, y), is the largest integer which
divides bothx andy.

Definition 1.2.9(Relatively Prime, Coprime). If for integersx andy, gcd(x, y) =
1, we sayx andy are relatively prime (or coprime).

TheEuclidean algorithm is an efficient way to determine the greatest common
divisor ofx andy. Without loss of generality, assume1 < x < y. The obvious way
to determinegcd(x, y) is to dividex andy by all positive integers up tox. This
takes at most2x steps; we show a more efficient way, taking at most about2 log2 x
steps.

Let [z] denote thegreatest integerless than or equal toz. We write

y =
[y

x

]
· x + r1, 0 ≤ r1 < x. (1.6)

Exercise 1.2.10.Prove thatr1 ∈ {0, 1, . . . , x− 1}.

Exercise 1.2.11.Provegcd(x, y) = gcd(r1, x).

We proceed in this manner untilrk equals zero or one. As each execution results
in ri < ri−1, we proceed at mostx times (although later we prove we need to apply
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these steps at most about2 log2 x times).

x =
[

x

r1

]
· r1 + r2, 0 ≤ r2 < r1

r1 =
[
r1

r2

]
· r2 + r3, 0 ≤ r3 < r2

r2 =
[
r2

r3

]
· r3 + r4, 0 ≤ r4 < r3

...

rk−2 =
[
rk−2

rk−1

]
· rk−1 + rk, 0 ≤ rk < rk−1. (1.7)

Exercise 1.2.12.Prove that ifrk = 0 thengcd(x, y) = rk−1, while if rk = 1, then
gcd(x, y) = 1.

We now analyze how largek can be. The key observation is the following:

Lemma 1.2.13. Consider three adjacent remainders in the expansion:ri−1, ri

andri+1 (wherey = r−1 andx = r0). Thengcd(ri, ri−1) = gcd(ri+1, ri), and
ri+1 < ri−1

2 .

Proof. We have the following relation:

ri−1 =
[
ri−1

ri

]
· ri + ri+1, 0 ≤ ri+1 < ri. (1.8)

If ri ≤ ri−1
2 then asri+1 < ri we immediately conclude thatri+1 < ri−1

2 . If
ri > ri−1

2 , then we note that

ri+1 = ri−1 −
[
ri−1

ri

]
· ri. (1.9)

Our assumptions onri−1 andri imply that
[

ri−1
ri

]
= 1. Thusri+1 < ri−1

2 . 2

We count how often we apply these steps. Going from(x, y) = (r0, r−1)
to (r1, r0) costs one application. Every two applications gives three pairs, say
(ri−1, ri−2), (ri, ri−1) and(ri+1, ri), with ri+1 at most half ofri−1. Thus ifk is
the largest integer such that2k ≤ x, we see have at most1 + 2k ≤ 1 + 2 log2 x
pairs. Each pair requires one integer division, where the remainder is the input for
the next step. We have proven

Lemma 1.2.14. Euclid’s algorithm requires at most1 + 2 log2 x divisions to find
the greatest common divisor ofx andy.

Euclid’s algorithm provides more information than just thegcd(x, y). Let us
assume thatri = gcd(x, y). The last equation before Euclid’s algorithm terminated
was

ri−2 =
[
ri−2

ri−1

]
· ri−1 + ri, 0 ≤ ri < ri−1. (1.10)
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Therefore we can find integersai−1 andbi−2 such that

ri = ai−1ri−1 + bi−2ri−2. (1.11)

We have writtenri as a linear combination ofri−2 andri−1. Looking at the second
to last application of Euclid’s algorithm, we find that there are integersa′i−2 and
b′i−3 such that

ri−1 = a′i−2ri−2 + b′i−3ri−3. (1.12)

Substituting forri−1 in the expansion ofri yields that there are integersai−2 and
bi−3 such that

ri = ai−2ri−2 + bi−3ri−3. (1.13)

Continuing by induction and recallingri = gcd(x, y) yields

Lemma 1.2.15.There exist integersa andb such thatgcd(x, y) = ax+ by. More-
over, Euclid’s algorithm gives aconstructiveprocedure to finda andb.

Thus, not only does Euclid’s algorithm show thata andb exist, it gives an effi-
cient way to find them.

Exercise 1.2.16.Find a andb such thata · 244 + b · 313 = gcd(244, 313).

Exercise 1.2.17.Add the details to complete an alternate, non-constructive proof
of the existence ofa andb with ax + by = gcd(x, y):

1. Letd be the smallest positive value attained byax + by as we varya, b ∈ Z.
Such ad exists. Sayd = αx + βy.

2. Showgcd(x, y)|d.

3. Lete = Ax + By > 0. Thend|e. Therefore for any choice ofA,B ∈ Z,
d|(Ax + By).

4. Consider(a, b) = (1, 0) or (0, 1), yielding d|x and d|y. Therefored ≤
gcd(x, y). As we have showngcd(x, y)|d, this completes the proof.

Note this is a non-constructive proof. By minimizingax + by we obtaingcd(x, y),
but we have no idea how many steps are required. Prove that a solution will be
found either among pairs(a, b) with a ∈ {1, . . . , y− 1} and−b ∈ {1, . . . , x− 1},
or−a ∈ {1, . . . , y−1} andb ∈ {1, . . . , x−1}. Choosing an object that is minimal
in some sense (here the minimality comes from being the smallest integer attained
as we varya andb in ax + by) is a common technique; often this number has the
desired properties. See the proof of Lemma 6.4.3 for an additional example of this
method.

Exercise 1.2.18.How many steps are required to find the greatest common divisor
of x1, . . . , xN?

Remark 1.2.19. In bounding the number of computations in the Euclidean algo-
rithm, we looked at three adjacent remainders and showed that a desirable relation
held. This is a common technique, where it can often be shown that at least one of
several consecutive terms in a sequence has some good property; see also Theorem
7.9.4 for an application to continued fractions and approximating numbers.
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y = f(x)

a x1 x0

Figure 1.1 Newton’s Method

1.2.4 Newton’s Method and Combinatorics

We give some examples and exercises on efficient algorithms and efficient ways to
arrange computations. The first assumes some familiarity with calculus, the second
with basic combinatorics.

Newton’s Method: Newton’s Method is an algorithm to approximate solutions
to f(x) = 0 for f a differentiable function onR. It is much faster than the method
of Divide and Conquer (see §A.2.1), which finds zeros by looking at sign changes
of f , though this method is of enormous utility (see Remark 3.2.24 where Divide
and Conquer is used to find zeros of the Riemann zeta function).

Start withx0 such thatf(x0) is small; we callx0 the initial guess. Draw the
tangent line to the graph off atx0, which is given by the equation

y − f(x0) = f ′(x0) · (x− x0). (1.14)

Let x1 be thex-intercept of the tangent line;x1 is the next guess for the rootα. See
Figure 1.1. Simple algebra gives

x1 = x0 − f(x0)
f ′(x0)

. (1.15)

We now iterate and apply the above procedure tox1, obtaining

x2 = x1 − f(x1)
f ′(x1)

. (1.16)

If we let g(x) = x− f(x)
f ′(x) , we notice we have the sequence

x0, g(x0), g(g(x0)), . . . (1.17)

We hope this sequence will converge to the root, at least forx0 close to the root
and forf sufficiently nice. How closex0 has to be is a delicate matter. If there
are several roots tof , which root the sequence converges to depends crucially on
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the initial valuex0 and the functionf . In fact its behavior is what is known tech-
nically aschaotic. Informally, we say that we have chaos when tiny changes in
the initial value give us very palpable changes in the output. One common exam-
ple is in iterates of polynomials, namely the limiting behavior off(x0), f(f(x0)),
f(f(f(x0))) and so on; see [Dev, Edg, Fal, Man].

Exercise 1.2.20.Let f(x) = x2 − a for somea > 0. Show Newton’s Method
converges to

√
a, and discuss the rate of convergence; i.e., ifxn is accurate to

m digits, approximately how accurate isxn+1? For example, look ata = 3 and
x0 = 2. Similarly, investigaten

√
a. Compare this with Divide and Conquer, where

each iteration basically halves the error (so roughly every ten iterations yields three
new decimal digits, because1210 ≈ 1

103 ).

Remark 1.2.21. One big difference between Newton’s Method and Divide and
Conquer is that while both require us to evaluate the function, Newton’s Method
requires us to evaluate the derivative as well. Hence Newton’s Method is not ap-
plicable to as wide of a class of functions as Divide and Conquer, but as it uses more
information aboutf it is not surprising that it gives better results (i.e., converges
faster to the answer).

Exercise 1.2.22.Modify Newton’s Method to find maxima and minima of functions.
What must you assume about these functions to use Newton’s method?

Exercise 1.2.23.Letf(x) be a degreen polynomial with complex coefficients. By
the Fundamental Theorem of Algebra, there aren (not necessarily distinct) roots.
Assume there arem distinct roots. Assignm colors, one to each root. Given a point
x ∈ C, we colorx with the color of the root thatx approaches under Newton’s
Method (if it converges to a root). Write a computer program to color such sets for
some simple polynomials, for example forxn − 1 = 0 for n = 2, 3 or 4.

Exercise 1.2.24.Determine conditions onf , the roota and the starting guessx0

such that Newton’s Method will converge to the root. See page212 of [BB] or page
118 of [Rud] for more details.

Exercise(h) 1.2.25 (Fixed Points). We sayx0 is a fixed point of a functionh if
h(x0) = x0. Let f be a continuously differentiable function. If we setg(x) =
x− f(x)

f ′(x) , show a fixed point ofg corresponds to a solution tof(x) = 0.
Assume thatf : [a, b] → [a, b] and there is aC < 1 such that|f ′(x)| < C

for x ∈ [a, b]. Provef has a fixed point in[a, b]. Is the result still true if we
just assume|f ′(x)| < 1? Fixed points have numerous applications, among them
showing optimal strategies exist inn-player games. See [Fr] for more details.

Combinatorics: Below we describe a combinatorial problem which contains
many common features of the subject. Assume we have 10 identical cookies and
5 distinct people. How many different ways can we divide the cookies among the
people, such that all 10 cookies are distributed? Since the cookies are identical,
we cannot tell which cookies a person receives; we can only tell how many. We
could enumerate all possibilities: there are 5 ways to have one person receive 10
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cookies, 20 ways to have one person receive 9 and another receive 1, and so on.
While in principle we can solve the problem, in practice this computation becomes
intractable, especially as the numbers of cookies and people increase.

We introduce common combinatorial functions. The first is thefactorial func-
tion: for a positive integern, setn! = n · (n− 1) · · · 2 · 1. The number of ways to
chooser objects fromn when order matters isn ·(n−1) · · · (n−(r−1)) = n!

(n−r)!
(there aren ways to choose the first element, thenn− 1 ways to choose the second
element, and so on). Thebinomial coefficient

(
n
r

)
= n!

r!(n−r)! is the number of
ways to chooser objects fromn objects when order does not matter. The reason
is that once we have chosenr objects there arer! ways to order them. For conve-
nience, we define0! = 1; thus

(
n
0

)
= 1, which may be interpreted as saying there

is one way to choose zero elements from a set ofn objects. For more on binomial
coefficients, see §A.1.3.

We show the number of ways to divide 10 cookies among 5 people is
(
10+5−1

5−1

)
.

In general, if there areC cookies andP people,

Lemma 1.2.26. The number of distinct ways to divideC identical cookies among
P different people is

(
C+P−1

P−1

)
.

Proof. ConsiderC + P − 1 cookies in a line, and number them1 to C + P − 1.
ChooseP − 1 cookies. There are

(
C+P−1

P−1

)
ways to do this. This divides the

cookies intoP sets: all the cookies up to the first chosen (which gives the number
of cookies the first person receives), all the cookies between the first chosen and
the second chosen (which gives the number of cookies the second person receives),
and so on. This dividesC cookies amongP people. Note different sets ofP − 1
cookies correspond to different partitions ofC cookies amongP people, and every
such partition can be associated to choosingP − 1 cookies as above. 2

Remark 1.2.27. In the above problem we do not carewhich cookies a person
receives. We introduced the numbers for convenience: now cookies 1 throughi1
(say) are given to person 1, cookiesi1 + 1 throughi2 (say) are given to person 2,
and so on.

For example, if we have10 cookies and5 people, say we choose cookies3, 4, 7
and13 of the10 + 5− 1 cookies:⊙ ⊙ ⊗ ⊗ ⊙ ⊙ ⊗ ⊙ ⊙ ⊙ ⊙ ⊙ ⊗ ⊙

This corresponds to person1 receiving two cookies, person2 receiving zero, person
3 receiving two, person4 receiving five and person5 receiving one cookie.

The above is an example of a partition problem: we are solvingx1 + x2 +
x3 + x4 + x5 = 10, wherexi is the number of cookies personi receives. We
may interpret Lemma 1.2.26 as the number of ways to divide an integerN into k
non-negative integers is

(
N+k−1

k−1

)
.

Exercise 1.2.28.Prove that
N∑

n=0

(
n + k − 1

k − 1

)
=

(
N + 1 + k − 1

k − 1

)
. (1.18)
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We may interpret the above as dividingN cookies amongk people, where we do
not assume all cookies are distributed.

Exercise(h) 1.2.29. LetM be a set withm > 0 elements,N a set withn > 0
elements andO a set withm + n elements. For̀ ∈ {0, . . . , m + n}, prove

min(m,`)∑

k=max(0,`−n)

(
m

k

)(
n

`− k

)
=

(
m + n

`

)
. (1.19)

This may be interpreted as partitioningO into two sets, one of sizè.

In Chapter 13 we describe other partition problems, such as representing a num-
ber as a sum of primes or integer powers. For example, the famous Goldbach
problem says any even number greater than 2 is the sum of two primes (known to
be true for integers up to6 ·1016 [Ol]). While to date this problem has resisted solu-
tion, we have good heuristics which predict that, not only does a solution exist, but
how many solutions there are. Computer searches have verified these predictions
for largeN of size1010.

Exercise 1.2.30(Crude Prediction). By the Prime Number Theorem, there are
N

log N primes less thanN . If we assume all numbersn ≤ N are prime with the
same likelihood (a crude assumption), predict how many ways there are to writeN
as a sum of two primes.

Exercise 1.2.31.In partition problems, often there are requirements such as that
everyone receives at least one cookie. How many ways are there to writeN as a
sum ofk non-negative integers? How many solutions ofx1 + x2 + x3 = 1701 are
there if eachxi is an integer andx1 ≥ 2, x2 ≥ 4, andx3 ≥ 601?

Exercise 1.2.32.In solving equations in integers, often slight changes in the co-
efficients can lead to wildly different behavior and very different sets of solutions.
Determine the number of non-negative integer solutions tox1 + x2 = 1996, 2x1 +
2x2 = 1996, 2x1+2x2 = 1997, 2x1+3x2 = 1996, 2x1+2x2+2x3+2x4 = 1996
and2x1 + 2x2 + 3x3 + 3x4 = 1996. See Chapter 4 for more on finding integer
solutions.

Exercise(h) 1.2.33. Letf be a homogenous polynomial of degreed in n variables.
This means

f(x1, . . . , xn) =
∑

0≤k1,...,kn≤d
k1+···+kn=d

ak1,...,knxk1
1 · · ·xkn

n , ak1,...,knxk1
1 ∈ C. (1.20)

Prove for anyλ ∈ C that

f(λx1, . . . , λxn) = λdf(x1, . . . , xn). (1.21)

As a function ofn andd, how many possible terms are there inf (each term is of
the formxk1

1 · · ·xkn
n )?

The above problems are a small set of interesting results in combinatorics; see
also [Mil4] for other techniques to prove combinatorial identities. We give some
additional problems which illustrate the subject; the Binomial Theorem (Theorem
A.1.8) is useful for these and other investigations.
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Exercise(h) 1.2.34.Letk be a positive integer and consider the sequence1k, 2k, 3k,
. . . (so xn = nk). Consider the new sequence obtained by subtracting adjacent
terms: 2k − 1k, 3k − 2k, . . . and so on. Continue forming new sequences by
subtracting adjacent terms of the previous terms. Prove that each term of thekth

sequence isk!.

Exercise(hr) 1.2.35. Letk andd be positive integers. Prove

kd =
d−1∑
m=0

k−1∑

`=0

(
d

m

)
`m. (1.22)

1.3 CLOCK ARITHMETIC: ARITHMETIC MODULO n

LetZ denote the set of integers and forn ∈ N defineZ/nZ = {0, 1, 2, . . . , n− 1}.
We often readZ/nZ as theintegers modulon.

Definition 1.3.1 (Congruence). x ≡ y mod n meansx − y is an integer multiple
of n. Equivalently,x andy have the same remainder when divided byn.

When there is no danger of confusion, we often drop the suffix modn, writing
insteadx ≡ y.

Lemma 1.3.2(Basic Properties of Congruences). For a fixedn ∈ N anda, a′, b, b′

integers we have

1. a ≡ b mod n if and only ifb ≡ a mod n.

2. a ≡ b mod n andb ≡ c mod n impliesa ≡ c mod n.

3. a ≡ a′ mod n and b ≡ b′ mod n, thenab ≡ a′b′ mod n. In particular
a ≡ a′ mod n impliesab ≡ a′b mod n for all b.

Exercise 1.3.3.Prove the above relations. Ifab ≡ cb mod m, musta ≡ c mod m?

For x, y ∈ Z/nZ, we definex + y to be the unique numberz ∈ Z/nZ such
that n|(x + y − z). In other words,z is the unique number inZ/nZ such that
x + y ≡ z mod n. One can show thatZ/nZ is a finite group under addition; in
fact, it is a finite ring. (See §1.4.1 for the definition of a group).

Exercise(h) 1.3.4 (Arithmetic Modulon). Define multiplication ofx, y ∈ Z/nZ
by x · y is the uniquez ∈ Z/nZ such thatxy ≡ z mod n. We often writexy for
x · y. Prove that this multiplication is well defined, and that an elementx has a
multiplicative inverse if and only if(x, n) = 1. Conclude that if every non-zero
element ofZ/nZ has a multiplicative inverse, thenn must be prime.

Arithmetic modulon is also called clock arithmetic. Ifn = 12 we haveZ/12Z.
If it is 10 o’clock now, in5 hours it is3 o’clock because10 + 5 = 15 ≡ 3 mod
12. See [Bob] for an analysis of the “randomness” of the inverse map in clock
arithmetic.
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Definition 1.3.5 (Least Common Multiple). Let m,n ∈ N . The least common
multiple ofm andn, denoted bylcm(m,n), is the smallest positive integer divisible
by bothm andn.

Exercise 1.3.6.If a ≡ b mod n anda ≡ b mod m, thena ≡ b mod lcm(m,n).

Exercise 1.3.7.Prove for all positive integersm,n that lcm(m, n) · gcd(m,n) =
mn.

Are there integer solutions to the equation2x + 1 = 2y? The left hand side is
always odd, the right hand side is always even. Thus there are no integer solutions.
What we did is really arithmetic modulo2 or arithmetic inZ/2Z, and indicates the
power of congruence arguments.

Consider nowx2 + y2 + z2 = 8n + 7. This never has integer solutions. Let
us study this equation modulo8. The right hand side is7 modulo8. What are the
squares modulo8? They are12 ≡ 1, 22 ≡ 4, 32 ≡ 1, 42 ≡ 0, and then the pattern
repeats (as modulo8, k and(8− k) have the same square). We see there is no way
to add three squares and get7. Thus there are no solutions tox2+y2+z2 = 8n+7.

Remark 1.3.8(Hasse Principle). In general, when searching for integer solutions
one often tries to solve the equation modulo different primes. If there is no solution
for some prime, then there are no integer solutions. Unfortunately, the converse is
not true. For example, Selmer showed3x3 + 4y3 + 5z3 = 0 is solvable modulo
p for all p, but there are no rational solutions. We discuss this in more detail in
Chapter 4.

Exercise 1.3.9(Divisibility Rules). Prove a number is divisible by 3 (or 9) if and
only if the sum of its digits are divisible by 3 (or 9). Prove a number is divisible by
11 if and only if the alternating sum of its digits is divisible by 11 (for example, 341
yields 3-4+1). Find a rule for divisibility by 7.

Exercise 1.3.10(Chinese Remainder Theorem). Let m1, m2 be relatively prime
positive integers. Prove that for anya1, a2 ∈ Z there exists a uniquex mod m1m2

such thatx ≡ a1 mod m1 andx ≡ a2 mod m2. Is this still true ifm1 andm2 are
not relatively prime? Generalize tom1, . . . ,mk anda1, . . . , ak.

1.4 GROUP THEORY

We introduce enough group theory to prove our assertions about RSA. For more
details, see [Art, J, La3].

1.4.1 Definition

Definition 1.4.1 (Group). A setG equipped with a mapG × G → G (denoted by
(x, y) 7→ xy) is a group if

1. (Identity)∃e ∈ G such that∀x ∈ G, ex = xe = x.
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2. (Associativity)∀x, y, z ∈ G, (xy)z = x(yz).

3. (Inverse)∀x ∈ G, ∃y ∈ G such thatxy = yx = e.

4. (Closure)∀x, y ∈ G, xy ∈ G.

We have written the group multiplicatively,(x, y) 7→ xy; if we wrote(x, y) 7→
x + y, we say the group is written additively. We callG a finite group if the setG
is finite. If ∀x, y ∈ G, xy = yx, we say the group isabelianor commutative.

Exercise 1.4.2.Show that under additionZ/nZ is an abelian group.

Exercise 1.4.3.Consider the set ofN × N matrices with real entries and non-
zero determinant. Prove this is a group under matrix multiplication, and show this
group is not commutative ifN > 1. Is it a group under matrix addition?

Exercise 1.4.4.Let (Z/pZ)∗ = {1, 2, . . . , p − 1} wherea · b is defined to be
ab mod p. Prove this is a multiplicative group ifp is prime. More generally, let
(Z/mZ)∗ be the subset ofZ/mZ of numbers relatively prime tom. Show(Z/mZ)∗

is a multiplicative group.

Exercise 1.4.5(Euler’sφ-function (or totient function)). Letφ(n) denote the num-
ber of elements in(Z/nZ)∗. Prove that forp prime,φ(p) = p − 1 andφ(pk) =
pk − pk−1. If p andq are distinct primes, proveφ(pjqk) = φ(pj)φ(qk). If n and
m are relatively prime, prove thatφ(nm) = φ(n)φ(m). Noteφ(n) is the size of
the group(Z/nZ)∗.

Definition 1.4.6(Subgroup). A subsetH of G is a subgroup ifH is also a group.

Our definitions imply any groupG has at least two subgroups, itself and the
empty set.

Exercise 1.4.7.Prove the following equivalent definition: A subsetH of a group
G is a subgroup if for allx, y ∈ H, xy−1 ∈ H.

Exercise 1.4.8.Let G be an additive subgroup ofZ. Prove that there exists an
n ∈ N such that every element ofG is an integral multiple ofn.

Exercise 1.4.9.Let GLn(R) be the multiplicative group ofn×n invertible matrices
with real entries. Let SLn(Z) be the subset with integer entries and determinant 1.
Prove SLn(Z) is a subgroup. This is a very important subgroup in number theory;
whenn = 2 it is called themodular group. See §7.7 for an application to continued
fractions.

1.4.2 Lagrange’s Theorem

We prove some basic properties offinite groups (groups with finitely many ele-
ments).

Definition 1.4.10(Order). If G is a finite group, the number of elements ofG is the
order ofG and is denoted by|G|. If x ∈ G, the order ofx in G, ord(x), is the least
positive powerm such thatxm = e, wheree ∈ G is the identity of the group.
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Exercise(h) 1.4.11. Prove all elements in a finite group have finite order.

Theorem 1.4.12(Lagrange). Let H be a subgroup of a finite groupG. Then|H|
divides |G|. In particular, takingH to be the subgroup generated byx ∈ G,
ord(x)|ord(G).

We first prove two useful lemmas.

Lemma 1.4.13.LetH be a subgroup ofG, and leth ∈ H. ThenhH = H.

Proof. It suffices to showhH ⊂ H andH ⊂ hH. By closure,hH ⊂ H. For the
other direction, leth′ ∈ H. Thenhh−1h′ = h′; ash−1h′ ∈ H, everyh′ ∈ H is
also inhH. 2

Lemma 1.4.14. LetH be a subgroup of a groupG. Then for allgi, gj ∈ G either
giH = gjH or the two sets are disjoint.

Proof. AssumegiH ∩ gjH is non-empty; we must show they are equal. Letx =
gih1 = gjh2 be in the intersection. Multiplying on the right byh−1

1 ∈ H (which
exists becauseH is a subgroup) givesgi = gjh2h

−1
1 . SogiH = gjh2h

−1
1 H. As

h2h
−1
1 H = H, we obtaingiH = gjH. 2

Definition 1.4.15(Coset). We call a subsetgH of G a coset(actually, a left coset)
of H. In general the set of allgH for a fixedH is not a subgroup.

Exercise(h) 1.4.16. Show not every set of cosets is a subgroup.

We now prove Lagrange’s Theorem.

Proof of Lagrange’s theorem.We claim

G =
⋃

g∈G

gH. (1.23)

Why is there equality? Asg ∈ G andH ⊂ G, eachgH ⊂ G, hence their union is
contained inG. Further, ase ∈ H, giveng ∈ G, g ∈ gH. Thus,G is a subset of
the right side, proving equality.

By Lemma 1.4.13, two cosets are either identical or disjoint. By choosing a
subset of the cosets, we show the union in (1.23) equals a union of disjoint cosets.
There are only finitely many elements inG. As we go through allg in G, if the
cosetgH equals one of the cosets already chosen, we do not include it; if it is new,
we do. Continuing this process, we obtain

G =
k⋃

i=1

giH (1.24)

for some finitek, and thek cosets are disjoint. IfH = {e}, k is the number
of elements ofG; in general, however,k will be smaller. Each setgiH has|H|
elements, and no two cosets share an element. Thus|G| = k|H|, proving |H|
divides|G|.
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Exercise 1.4.17.Let G = (Z/15Z)∗. Find all subgroups ofG and writeG as the
union of cosets for some proper subgroupH (H is a proper subgroup of G if H
is neither{1} nor G).

Exercise 1.4.18.Let G = (Z/p1p2Z)∗ for two distinct primesp1 and p2. What
are the possible orders of subgroups ofG? Prove that there is either a subgroup of
orderp1 or a subgroup of orderp2 (in fact, there are subgroups of both orders).

1.4.3 Fermat’s Little Theorem

We deduce some consequences of Lagrange’s Theorem which will be useful in our
cryptography investigations.

Corollary 1.4.19 (Fermat’s Little Theorem). For any primep, if gcd(a, p) = 1
thenap−1 ≡ 1 mod p.

Proof. As |(Z/pZ)∗| = p− 1, the result follows from Lagrange’s Theorem. 2

Exercise(h) 1.4.20. One can reformulate Fermat’s Little Theorem as the statement
that if p is prime, for alla we havep|ap − a. Give a proof for this formulation
withoutusing group theory. Doesn|an − a for all n?

Exercise 1.4.21.Prove that if for somea, an−1 6≡ 1 mod n thenn is composite.

Thus Fermat’s Little Theorem is a fast way to show certain numbers are com-
posite (remember exponentiation is fast: see §1.2.1); we shall also encounter Fer-
mat’s Little Theorem in §4.4.3 when we count the number of integer solutions
to certain equations. Unfortunately, it is not the case thatan−1 ≡ 1 mod n im-
plies n is prime. There are compositen such that for all positive integersa,
an−1 ≡ 1 mod n. Such composite numbers are called Carmichael numbers (the
first few are 561, 1105 and 1729). More generally, one has

Theorem 1.4.22(Euler). If gcd(a, n) = 1, thenaφ(n) ≡ 1 mod n.

Proof. Let (a, n) = 1. By definition,φ(n) = |(Z/nZ)∗|. By Lagrange’s Theorem
the order ofa ∈ (Z/nZ)∗ dividesφ(n), or aφ(n) ≡ 1 mod n. 2

Remark 1.4.23. For our applications to RSA, we only need the case whenn is
the product of two primes. In this case, consider the set{1, . . . , pq}. There arepq
numbers,q numbers are multiples ofp, p numbers are multiples ofq, and one is a
multiple of bothp andq. Thus, the number of numbers in{1, . . . , pq} relatively
prime topq is pq− p− q + 1 (why?). Note this equalsφ(p)φ(q) = (p− 1)(q− 1).
This type of argument is known asInclusion - Exclusion. See also Exercise 2.3.18.

Exercise 1.4.24.Korselt [Kor] proved that a composite numbern is a Carmichael
number if and only ifn is square-free and if a primep|n, then(p − 1)|(n − 1).
Prove that if these two conditions are met thenn is a Carmichael number.

Research Project 1.4.25(Carmichael Numbers). It is known (see [AGP]) that
there are infinitely many Carmichael numbers. One can investigate the spacings
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between adjacent Carmichael numbers. For example, choose a largeX and look
at all Carmichael numbers in[X, 2X], sayc1, . . . , cn+1. The average spacing be-
tween these numbers is about2X−X

n (they are spread out over an interval of size
X, and there aren differences:c2 − c1, . . . , cn+1 − cn. How are these differences
distributed? Often, it is more natural to rescale differences and spacings so that
the average spacing is 1. The advantage of such a renormalization is the results
are often scale invariant (i.e., unitless quantities). For more on investigating such
spacings, see Chapter 12.

Exercise(h) 1.4.26. Prove an integer is divisible by3 (resp.,9) if and only if the
sum of its digits is divisible by3 (resp.,9).

Exercise(h) 1.4.27. Show an integer is divisible by11 if and only if the alternating
sum of its digits is divisible by11; for example,924 is divisible by11 because
11|(9 − 2 + 4). Use Fermat’s Little Theorem to find a rule for divisibility by7 (or
more generally, for any prime).

Exercise(h) 1.4.28. Show that ifx is a positive integer then there exists a positive
integery such that the productxy has only zeros and ones for digits.

1.4.4 Structure of(Z/pZ)∗

The multiplicative group(Z/pZ)∗ for p prime has a rich structure which will sim-
plify many investigations later.

Theorem 1.4.29.For p prime,(Z/pZ)∗ is cyclic of orderp− 1. This means there
is an elementg ∈ (Z/pZ)∗ such that

(Z/pZ)∗ = {1, 2, . . . , p− 2, p− 1} = {g1, g2, . . . , gp−2, gp−1}. (1.25)

We sayg is a generator of the group. For eachx there is a unique integer
k ∈ {1, . . . , p − 1} such thatx ≡ gk mod p. We sayk is the index of x relative
to g. For eachx ∈ (Z/pZ)∗, theorder of x is the smallest positive integern such
thatxn ≡ 1 mod p. For example, ifp = 7 we have

{1, 2, 3, 4, 5, 6} = {36, 32, 31, 34, 35, 33}, (1.26)

which implies3 is a generator (and the index of 4 relative to 3 is 4, because4 ≡
34 mod 7). Note5 is also a generator of this group, so the generator need not be
unique.

Sketch of the proof.We will use the fact that(Z/pZ)∗ is a commutative group:
xy = yx. Let x, y ∈ (Z/pZ)∗ with ordersm andn for the exercises below. The
proof comes from the following:

Exercise 1.4.30.Assumem = m1m2, with m1,m2 relatively prime. Showxm1

has orderm2.

Exercise(h) 1.4.31. Let ` be the least common multiple ofm and n (the smallest
number divisible by bothm andn). Prove that there is an elementz of order`.
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Exercise 1.4.32.By Lagrange’s Theorem, the order of anyx dividesp−1 (the size
of the group). From this fact and the previous exercises, show there is somed such
that the order of every element dividesd ≤ p− 1, andthere is an element of order
d and no elements of larger order.

The proof is completed by showingd = p − 1. The previous exercises imply
that every element satisfies the equationxd − 1 ≡ 0 mod p. As every element in
the group satisfies this, and there arep− 1 elements in the group, we have a degree
d polynomial withp− 1 roots. We claim this can only occur ifd = p− 1.

Exercise(h) 1.4.33. Prove the above claim.

Therefored = p−1 and there is some elementg of orderp−1; thus,g’s powers
generate the group.

Exercise 1.4.34.For p > 2, k > 1, what is the structure of(Z/pkZ)∗? If all the
prime divisors ofm are greater than 2, what is the structure of(Z/mZ)∗? For
more on the structure of these groups, see any undergraduate algebra textbook (for
example, [Art, J, La3]).

1.5 RSA REVISITED

We have developed sufficient machinery to prove why RSA works. Remember
Bob chose two primesp andq, and numbersd (for decrypt) ande (for encrypt)
such thatde ≡ 1 mod φ(pq). He made publicN = pq ande and kept secret the
two primes andd. Alice wants to send Bob a numberM (smaller thanN ). She
encrypts the message by sendingX ≡ Me mod N . Bob then decrypts the message
by calculatingXd mod N , which we claimed equalsM .

As X ≡ Me mod N , there is an integern such thatX = Me + nN . Thus
Xd = (Me +nN)d, and the last term is clearly of the form(Me)d +n′N for some
n′. We need only show(Me)d ≡ M mod N . As ed ≡ 1 mod φ(N), there is an
m such thated = 1 + mφ(N). Therefore

(Me)d = Med = M1+mφ(N) = M ·Mmφ(N) = M · (Mφ(N))m. (1.27)

If M is relatively prime toN then By Euler’s Theorem (Theorem 1.4.22),Mφ(N) ≡
1 mod N , which completes the proof. Thus we can only send messages relatively
prime toN . In practice this is not a problem, as it is very unlikely to stumble upon
a message that shares a factor withN ; of course, if we did find such a message
we could quickly find the factors ofN . If our initial message has a factor in com-
mon withN , we need only tweak our message (add another letter or spell a word
incorrectly).

Why is RSA secure? Assume a third person (say Charlie) intercepts the en-
crypted messageX. He knowsX, N ande, and wants to recoverM . Knowing
d such thatde ≡ 1 mod φ(N) makes decrypting the message trivial: one need
only computeXd mod N . Thus Charlie is trying to solve the equationed ≡
1 mod φ(N); fortunately for Alice and Bob this equation has two unknowns,d and
φ(N)! Right now, there is no known fast way to determineφ(N) from N . Charlie
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can of course factorN ; once he has the factors, he knowsφ(N) and can findd;
however, the fastest factorization algorithms make 400 digit numbers unaccessible
for now.

This should be compared to primality testing, which was only recently shown
to be fast ([AgKaSa]). Previous deterministic algorithms to test whether or not a
number is prime were known to be fast only if certain well believed conjectures are
true. It was an immense achievement showing that there is a deterministic, efficient
algorithm. The paper is very accessible, and worth the read.

Remark 1.5.1. Our simple example involved computing a sixty-six digit number,
and this was for a smallN (N = 9797). Using binary expansions to exponenti-
ate, as we need only transmit our message moduloN , we never need to compute
anything larger than the product of four digit numbers.

Remark 1.5.2. See [Bon] for a summary of attempts to break RSA. Certain prod-
ucts of two primes are denoted RSA challenge numbers, and the public is invited to
factor them. With the advent of parallel processing, many numbers have succumbed
to factorization. See http://www.rsasecurity.com/rsalabs/node.asp?id=2092 for more
details.

Exercise 1.5.3.If M < N is not relatively prime toN , show how to quickly find
the prime factorization ofN .

Exercise 1.5.4(Security Concerns). In the system described, there is no way for
Bob to verify that the message came from Alice! Design a system where Alice makes
some information public (and keeps some secret) so that Bob can verify that Alice
sent the message.

Exercise 1.5.5.Determiningφ(N) is equivalent to factoringN ; there is no com-
putational shortcut to factoring. Clearly, if one knows the factors ofN = pq,
one knowsφ(N). If one knowsφ(N) and N , one can recover the primesp and
q. Show that ifK = N + 1 − φ(N), then the two prime factors ofN are
(K ±√K2 − 4N)/2, and these numbers are in fact integers.

Exercise(hr) 1.5.6(Important). If e and (p − 1)(q − 1) are given, show how one
may efficiently find ad such thated− 1 divides(p− 1)(q − 1).

1.6 EISENSTEIN’S PROOF OF QUADRATIC RECIPROCITY

We conclude this introduction to basic number theory and group theory by giv-
ing a proof of quadratic reciprocity (we follow the beautiful exposition in [LP] of
Eisenstein’s proof; see the excellent treatments in [IR, NZM] for alternate proofs).
In §1.2.4, we described Newton’s Method to find square roots of real numbers.
Now we turn our attention to a finite group analogue: for a primep and ana 6≡
0 mod p, when isx2 ≡ a mod p solvable? For example, ifp = 5 then(Z/pZ)∗ =
{1, 2, 3, 4}. Squaring these numbers gives{1, 4, 4, 1} = {1, 4}. Thus there are two
solutions ifa ∈ {1, 4} and no solutions ifa ∈ {2, 3}. The problem of whether
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or not a given number is a square is solvable: we can simply enumerate the group
(Z/pZ)∗, square each element, and see ifa is a square. This takes aboutp steps;
quadratic reciprocity will take aboutlog p steps. For applications, see §4.4.

1.6.1 Legendre Symbol

We introduce notation. From now on,p andq will always be distinct odd primes.

Definition 1.6.1(Legendre Symbol
( ·
p

)
). The Legendre Symbol

(
a
p

)
is

(
a

p

)
=





1 if a is a non-zero square modulop

0 if a ≡ 0 modulop

−1 if a is a not a square modulop.

(1.28)

The Legendre symbol is a function onFp = Z/pZ. We extend the Legendre symbol
to all integers by

(
a
p

)
=

(
a mod p

p

)
.

Notea is a square modulop if there exists anx ∈ {0, 1, . . . , p − 1} such that
a ≡ x2 mod p.

Definition 1.6.2 (Quadratic Residue, Non-Residue). For a 6≡ 0 mod p, if x2 ≡
a mod p is solvable (resp., not solvable) we saya is a quadratic residue (resp.,
non-residue) modulop. Whenp is clear from context, we just say residue and non-
residue.

Exercise 1.6.3.Show the Legendre symbol is multiplicative:
(
ab
p

)
=

(
a
p

)(
b
p

)
.

Exercise(h) 1.6.4(Euler’s Criterion). For oddp,
(
a
p

) ≡ a
p−1
2 mod p.

Exercise 1.6.5.Show
(−1

p

)
= (−1)

p−1
2 and

(
2
p

)
= (−1)

p2−1
8 .

Lemma 1.6.6. For p an odd prime, half of the non-zero numbers in(Z/pZ)∗ are
quadratic residues and half are quadratic non-residues.

Proof. As p is odd, p−1
2 ∈ N. Consider the numbers12, 22, . . . , (p−1

2 )2. Assume
two numbersa andb are equivalent modp. Thena2 ≡ b2 mod p, so(a − b)(a +
b) ≡ 0 mod p. Thus eithera ≡ b mod p or a ≡ −b mod p; in other words,
a ≡ p − b. For 1 ≤ a, b ≤ p−1

2 we cannot havea ≡ p − b mod p, implying the
p−1
2 values above are distinct. As(p− r)2 ≡ r2 mod p, the above list is all of the

non-zero squares modulop. Thus half the non-zero numbers are non-zero squares,
half are non-squares. 2

Remark 1.6.7. By Theorem 1.4.29,(Z/pZ)∗ is a cyclic group with generatorg.
Using the group structure we can prove the above lemma directly: once we show
there is at least one non-residue, theg2k are the quadratic residues and theg2k+1

are the non-residues.

Exercise 1.6.8.Show for anya 6≡ 0 mod p that
p−1∑
t=0

(
t

p

)
=

p−1∑
t=0

(
at + b

p

)
= 0. (1.29)
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Exercise 1.6.9.For x ∈ {0, . . . , p − 1}, let Fp(x) =
∑

a≤x

(
n
p

)
; note Fp(0) =

Fp(p−1) = 0. If
(−1

p

)
= 1, showFp

(
p−1
2

)
= 0. Do you thinkF (x) is more likely

to be positive or negative? Investigate its values for variousx andp.

Initially the Legendre symbol is defined only when the bottom is prime. We now
extend the definition. Letn = p1 · p2 · · · pt be the product oft distinct odd primes.
Then

(
a
n

)
=

(
a
p1

)(
a
p2

) · · · ( a
pt

)
; this is theJacobi symbol, and has many of the same

properties as the Legendre symbol. We will study only the Legendre symbol (see
[IR] for more on the Jacobi symbol). Note the Jacobi symbol doesnot say that ifa
is a square (a quadratic residue) modn, thena is a square modpi for each prime
divisor.

The main result (which allows us to calculate the Legendre symbol quickly and
efficiently) is the celebrated

Theorem 1.6.10(The Generalized Law of Quadratic Reciprocity). For m, n odd
and relatively prime,

(
m

n

)(
n

m

)
= (−1)

m−1
2

n−1
2 . (1.30)

Gauss gave eight proofs of this deep result whenm andn are prime. If either
p or q are equivalent to1 mod 4 then we have

(
q
p

)
=

(
p
q

)
, i.e.,p has a square root

moduloq if and only if q has a square root modulop. We content ourselves with
proving the case withm,n prime.

Exercise 1.6.11.Using the Generalized Law of Quadratic Reciprocity, Exercise
1.6.5 and the Euclidean algorithm, show one can determine ifa < m is a square
modulom in logarithmic time (i.e., the number of steps is at most a fixed con-
stant multiple oflog m). This incredible efficiency is just one of many important
applications of the Legendre and Jacobi symbols.

1.6.2 The Proof of Quadratic Reciprocity

Our goal is to prove

Theorem 1.6.12(Quadratic Reciprocity). Letp andq be distinct odd primes. Then
(

q

p

)(
p

q

)
= (−1)

p−1
2

q−1
2 . (1.31)

As p andq are distinct, odd primes, both
(

q
p

)
and

(
p
q

)
are±1. The difficulty is

figuring out which signs are correct, and how the two signs are related. We use
Euler’s Criterion (Exercise 1.6.4).

The idea behind Eisenstein’s proof is as follows:
(

q
p

)(
p
q

)
is−1 to a power. Fur-

ther, we only need to determine the power modulo2. Eisenstein shows many ex-
pressions are equivalent modulo2 to this power, and eventually we arrive at an
expression which is trivial to calculate modulo 2. We repeatedly use the fact that
asp andq are distinct primes, the Euclidean algorithm implies thatq is invertible
modulop andp is invertible moduloq.
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We choose to present this proof as it showcases many common techniques in
mathematics. In addition to using the Euclidean algorithm and modular arithmetic,
the proof shows that quadratic reciprocity is equivalent to a theorem about the num-
ber of integer solutions of some inequalities, specifically the number of pairs of in-
tegers strictly inside a rectangle. This is just one of many applications of counting
solutions; we discuss this topic in greater detail in Chapter 4.

1.6.3 Preliminaries

Consider all multiples ofq by an evena ≤ p−1: {2q, 4q, 6q, . . . , (p−1)q}. Denote
a generic multiple byaq. Recall[x] is the greatest integer less than or equal tox.
By the Euclidean algorithm,

aq =
[
aq

p

]
p + ra, 0 < ra < p− 1. (1.32)

Thusra is the least non-negative number equivalent toaq mod p. The numbers
(−1)rara are equivalent to even numbers in{0, . . . , p − 1}. If ra is even this is
clear; if ra is odd, then(−1)rara ≡ p− ra mod p, and asp andra are odd, this is
even. Finally notera 6= 0; if ra = 0 thenp|aq. Asp andq are relatively prime, this
impliesp|a; however,p is prime anda ≤ p − 1. Thereforep cannot dividea and
thusra 6= 0.

Lemma 1.6.13. If (−1)rara ≡ (−1)rbrb thena = b.

Proof. We quickly get±ra ≡ rb mod p. If the plus sign holds, thenra ≡ rb mod
p impliesaq ≡ bq mod p. As q is invertible modulop, we geta ≡ b mod p, which
yieldsa = b (asa andb are even integers between2 andp− 1).

If the minus sign holds, thenra + rb ≡ 0 mod p, or aq + bq ≡ 0 mod p.
Multiplying by q−1 mod p now givesa + b ≡ 0 mod p. As a and b are even
integers between2 andp − 1, 4 < a + b ≤ 2p − 2. The only integer strictly
between4 and2p − 2 which is equivalent to0 mod p is p; however,p is odd and
a + b is even. Thus the minus sign cannot hold, and the elements are all distinct.2

Remark 1.6.14. The previous argument is very common in mathematics. We will
see a useful variant in Chapter 5, where we show certain numbers are irrational by
proving that if they were not then there would have to be an integer strictly between
0 and1.

Lemma 1.6.15.We have
(

q

p

)
= (−1)

P
a even,a 6=0 ra , (1.33)

wherea even, a 6= 0 meansa ∈ {2, 4, . . . , p− 3, p− 1}.
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Proof. For each evena ∈ {2, . . . , p− 1}, aq ≡ ra mod p. Thus modulop
∏
a even
a 6=0

aq ≡
∏

a even
a 6=0

ra

q
p−1
2

∏
a even

a 6=0

a ≡
∏

a even
a 6=0

ra

(
q

p

) ∏
a even

a 6=0

a ≡
∏

a even
a 6=0

ra, (1.34)

where the above follows from the fact that we havep−1
2 choices for an evena

(giving the factorq
p−1
2 ) and Euler’s Criterion (Exercise 1.6.4). Asa ranges over

all even numbers from2 to p− 1, so too do the distinct numbers(−1)rara mod p.
Note how important it was that we showedra 6= 0 in (1.32), as otherwise we would
just have0 = 0 in (1.34). Thus modulop,

∏
a even

a6=0

a ≡
∏

a even
a6=0

(−1)rara

∏
a even

a6=0

a ≡ (−1)
P

a even,a 6=0 ra
∏

a even
a 6=0

ra. (1.35)

Combining gives
(

q

p

)
(−1)

P
a even,a 6=0 ra

∏
a even

a 6=0

ra ≡
∏

a even
a 6=0

ra mod p. (1.36)

As eachra is invertible modulop, so is the product. Thus
(

q

p

)
(−1)

P
a even,a 6=0 ra ≡ 1 mod p. (1.37)

As
(

q
p

)
= ±1, the lemma follows by multiplying both sides by

(
q
p

)
. 2

Therefore it suffices to determine
∑

a even,a 6=0 ra mod 2. We make one last sim-
plification. By the first step in the Euclidean algorithm (1.32), we haveaq =[

aq
p

]
p + ra for somera ∈ {2, . . . , p− 1}. Hence

∑
a even

a 6=0

aq =
∑

a even
a 6=0

([
aq

p

]
p + ra

)
=

∑
a even

a 6=0

[
aq

p

]
p +

∑
a even

a6=0

ra. (1.38)

As we are summing over evena, the left hand side above is even. Thus the right
hand side is even, so

∑
a even

a 6=0

[
aq

p

]
p ≡

∑
a even

a 6=0

ra mod 2

∑
a even

a 6=0

[
aq

p

]
≡

∑
a even

a 6=0

ra mod 2, (1.39)
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where the last line follows from the fact thatp is odd, so modulo2 dropping the
factor ofp from the left hand side does not change the parity. We have reduced the

proof of quadratic reciprocity to calculating
∑

a even,a6=0

[
aq
p

]
. We summarize our

results below.

Lemma 1.6.16.Define

µ =
∑

a even
a6=0

[
aq

p

]

ν =
∑

a even
a6=0

[
ap

q

]
. (1.40)

Then (
q

p

)
= (−1)µ

(
p

q

)
= (−1)ν . (1.41)

Proof. By (1.37) we have
(

q

p

)
= (−1)

P
a even,a 6=0 ra . (1.42)

By (1.39) we have

∑
a even

a 6=0

[
aq

p

]
≡

∑
a even

a 6=0

ra mod 2, (1.43)

and the proof for
(

q
p

)
is completed by recalling the definition ofµ; the proof for the

case
(
p
q

)
proceeds similarly. 2

1.6.4 Counting Lattice Points

As our sums are not over all evena ∈ {0, 2, . . . , p − 1} but rather just over even
a ∈ {2, . . . , p−1}, this slightly complicates our notation and forces us to be careful
with our book-keeping. We urge the reader not to be too concerned about this slight
complication and instead focus on the fact that we are able to show quadratic reci-
procity is equivalent to counting the number of pairs of integers satisfying certain
relations.

Consider the rectangle with vertices atA = (0, 0), B = (p, 0), C = (p, q) and
D = (0, q). The upward sloping diagonal is given by the equationy = q

px. As p

andq are distinct odd primes, there are no pairs of integers(x, y) on the lineAC.
See Figure 1.2.

We add some non-integer points:E = (p
2 , 0), F = (p

2 , q
2 ), G = (0, q

2 ) and
H = (p

2 , q). Let #ABCeven denote the number of integer pairsstrictly inside the
triangleABC with evenx-coordinate, and#AEF denote the number of integer
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D(0,q)

A(0,0) B(p,0)

C(p,q)H

FG

E

Figure1.2 Lattice for the proof of Quadratic Reciprocity. PointsE( p
2
, 0), F ( p

2
, q

2
),

G(0, q
2
), H( p

2
, q)

pairsstrictly inside the triangleAEF ; thus, we do not count any integer pairs on
the linesAB, BC, CD or DA.

We now interpret
∑

a even,a 6=0

[
aq
p

]
. Consider the vertical line withx-coordinate

a. Then
[

aq
p

]
gives the number of pairs(x, y) with x-coordinate equal toa andy-

coordinate a positive integer at most
[

aq
p

]
. To see this, consider the lineAC (which

is given by the equationy = q
px). For definiteness, let us takep = 5, q = 7 and

a = 4. Then
[

aq
p

]
=

[
28
5

]
= 5, and there are exactly five integer pairs withx-

coordinate equal to4 and positivey-coordinate at most
[
28
5

]
: (4, 1), (4, 2), (4, 3),

(4, 4) and(4, 5). The general proof proceeds similarly.

Thus
∑

a even,a 6=0

[
aq
p

]
is the number of integer pairsstrictly inside the rectan-

gle ABCD with evenx-coordinate that are below the lineAC, which we denote
#ABCeven. We prove

Lemma 1.6.17. The number of integer pairs under the lineAC strictly inside the
rectangle with evenx-coordinate is congruent modulo2 to the number of integer
pairs under the lineAF strictly inside the rectangle. Thus#ABCeven = #AEF .

Proof. First observe that if0 < a < p
2 is even then the points underAC with x-

coordinate equal toa are exactly those under the lineAF with x-coordinate equal
to a. We are reduced to showing that the number of points underFC strictly inside
the rectangle with evenx-coordinate is congruent modulo2 to the number of points
under the lineAF strictly inside the rectangle with oddx-coordinate. Therefore let
us consider an evena with p

2 < a < p− 1.
The integer pairs on the linex = a strictly inside the rectangle are(a, 1),

(a, 2), . . . , (a, q−1). There areq−1 pairs. Asq is odd, there are an even number of
integer pairs on the linex = a strictly inside the rectangle. As there are no integer
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pairs on the lineAC, for a fixeda > p
2 , modulo2 there are the same number of

integer pairsaboveAC as there arebelowAC. The number of integer pairsabove
AC on the linex = a is equivalent modulo2 to the number of integer pairs below
AF on the linex = p − a. To see this, consider the map which takes(x, y) to
(p − x, q − y). As a > p

2 andis even,p − a < p
2 andis odd. Further, every odd

a < p
2 is hit (givenaodd < p

2 , start with the even numberp− aodd > p
2 ). A similar

proof holds fora < p
2 . 2

Exercise 1.6.18.Why are there no integer pairs on the lineAC?

We have thus shown that
∑

a even
a 6=0

[
aq

p

]
≡ #AEF mod 2; (1.44)

remember that#AEF is the number of integer pairs strictly inside the triangle
AEF . From Lemma 1.6.16 we know the left hand side isµ and

(
q
p

)
= (−1)µ.

Therefore (
q

p

)
= (−1)µ = (−1)#AEF . (1.45)

Reversing the rolls ofp andq, we see that
(

p

q

)
= (−1)ν = (−1)#AGF , (1.46)

whereν ≡ #AGF mod 2, with #AGF equal to the number of integer pairs
strictly inside the triangleAGF .

Exercise 1.6.19.Prove 1.46.

Combining our expressions forµ andν yields

µ + ν = #AEF + #AGF mod 2, (1.47)

which is the number of integer pairs strictly inside the rectangleAEFG. There are
p−1
2 choicesfor x (x ∈ {1, 2, . . . , p−1

2 }) andq−1
2 choicesfor y ∈ {1, 2, . . . , q−1

2 }),
giving p−1

2
q−1
2 pairsof integers strictly inside the rectangleAEFG. Thus,

(
q

p

)(
p

q

)
= (−1)µ+ν

= (−1)#AEF+#AGF

= (−1)
p−1
2

q−1
2 , (1.48)

whichcompletes the proof of Quadratic Reciprocity.

Exercise 1.6.20(Advanced). Let p be an odd prime. Are there infinitely many
primesq such thatq is a square modp? The reader should return to this problem
after Dirichlet’s Theorem (Theorem 2.3.4).




