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Mathematics and Finance 

‘Janice! D’ya think you can find that postcard?’ 
Professor Paul A. Samuelson was in his office at MIT in the Autumn 

of 2003 relating how, several decades earlier, he had come across the 
PhD thesis, dating back to 1900, in which Louis Bachelier had devel­
oped a theory of option pricing, a topic that was beginning to occupy 
Samuelson and other economists in the 1950s. Although no economist 
at the time had ever heard of Bachelier, he was known in mathematical 
circles for having independently invented Brownian motion and proved 
some results about it that appeared in contemporary texts such as J. L. 
Doob’s famous book Stochastic Processes, published in 1953. William 
Feller, whose influential two-volume treatise An Introduction to Proba­
bility Theory and Its Applications is widely regarded as a masterpiece 
of twentieth century mathematics, even suggested the alternative name 
Wiener–Bachelier process for the mathematical process we now know as 
Brownian motion. The story goes that L. J. (‘Jimmie’) Savage, doyen of 
mathematical statisticians of the post-World War II era, knew of Bache­
lier’s work and, with proselytizing zeal, thought that the economists 
ought to be told. So he sent postcards to his economist friends warn­
ing them that if they had not read Bachelier it was about time they did. 
Hence Samuelson’s appeal to Janice Murray, personal assistant extraor­
dinaire to the Emeritus Professors at MIT’s Department of Economics. 

‘When do you think you received it?’ she enquired. ‘Oh, I don’t know. 
Maybe thirty-five years ago.’ 

How was Janice going to handle a request like that? For one thing, his 
timing was way off: it was more like forty-five years. But Janice Murray 
did not get where she is today without diplomatic skills. 

‘There’s one place it might be’, she said, ‘and if it isn’t there, I’m afraid 
I can’t help you.’ 

It wasn’t there. 
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Jimmie Savage’s postcards—at least, the one sent to Samuelson—had 
spectacular consequences. An intensive period of development in finan­
cial economics followed, first at MIT and soon afterwards in many other 
places as well, leading to the Nobel Prize-winning solution of the option 
pricing problem by Fischer Black, Myron Scholes and Robert Merton in 
1973. In the same year, the world’s first listed options exchange opened 
its doors in Chicago. Within a decade, option trading had mushroomed 
into a multibillion dollar industry. Expansion, both in the volume and the 
range of contracts traded, has continued, and trading of option contracts 
is firmly established as an essential component of the global financial 
system. 

In this book we want to give the reader the opportunity to trace 
the developments in, and interrelations between, mathematics and eco­
nomics that lay behind the results and the markets we see today. It is 
indeed a curious story. We have already alluded to the fact that Bache­
lier’s work attracted little attention in either economics or business and 
had certainly been completely forgotten fifty years afterwards. On the 
mathematical side, things were very different: Bachelier was not at all 
lost sight of. He continued to publish articles and books in probability 
theory and held academic positions in France up to his retirement from 
the University of Besançon in 1937. He was personally known to other 
probabilists in France and his work was cited in some of the most influ­
ential papers of the twentieth century, including Kolmogorov’s famous 
paper of 1931, possibly the most influential of them all. 

Bachelier’s achievement in his thesis was to introduce, starting from 
scratch, much of the panoply of modern stochastic analysis, including 
many concepts generally associated with the names of other people 
working at considerably later dates. He defined Brownian motion and 
the Markov property, derived the Chapman–Kolmogorov equation and 
established the connection between Brownian motion and the heat equa­
tion. Much of the agenda for probability theory in the succeeding sixty 
years was concerned precisely with putting all these ideas on a rigorous 
footing. 

Did Samuelson and his colleagues really need Bachelier? Yes and no. 
In terms of the actual mathematical content of Bachelier’s thesis, the 
answer is certainly no. All of it had subsequently been put in much 
better shape and there was no reason to revisit Bachelier’s somewhat 
idiosyncratic treatment. The parts of the subject that really did turn 
out to be germane to the financial economists—the theory of martin­
gales and stochastic integrals—were in any case later developments. The 
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intriguing point here is that these later developments, which did (uncon­
sciously) to some extent follow on from Bachelier’s original programme, 
were made almost entirely from a pure mathematical perspective, and 
if their authors did have any possible extra-mathematical application 
in mind—which most of them did not—it was certainly not finance. Yet 
when the connection was made in the 1960s between financial economics 
and the stochastic analysis of the day, it was found that the latter was so 
perfectly tuned to the needs of the former that no goal-oriented research 
programme could possibly have done better. 

In spite of this, Paul Samuelson’s own answer to the above question 
is an unequivocal ‘yes’. Asked what impact Bachelier had had on him 
when he followed Savage’s advice and read the thesis, he replied ‘it was 
the tools’. Bachelier had attacked the option pricing problem—and come 
up with a formula extremely close to the Black–Scholes formula of sev­
enty years later—using the methods of what was later called stochastic 
analysis. He represented prices as stochastic processes and computed 
the quantities of interest by exploiting the connection between these 
processes and partial differential equations. He based his argument 
on a martingale assumption, which he justified on economic grounds. 
Samuelson immediately recognized that this was the way to go. And the 
tools were in much better shape than those available to Bachelier. 

From an early twenty-first century perspective it is perhaps hard to 
appreciate that an approach based on stochastic methods was a revolu­
tionary step. It goes back to the question of what financial economists 
consider to be their business. In the past this was exclusively the study of 
financial markets as part of an economic system: how they arise, what 
their role in the system is and, crucially, what determines the forma­
tion of prices. The classic example is the isolated island economy where 
grain-growing farmers on different parts of the island experience differ­
ent weather conditions. Everybody can be better off if some medium of 
exchange is set up whereby grain can be transferred from north to south 
when there is drought in the south, in exchange for a claim by northern­
ers on southern grain which can be exercised when weather conditions 
in the south improve. In a market of this sort, prices will ultimately be 
determined by the preferences of the farmers (how much value they put 
on additional consumption) and by the weather. If one wants a stochas­
tic model of the prices, one should start by modelling the participants’ 
preferences, the weather and the rules under which the market oper­
ates. To take a purely econometric approach, i.e. represent the prices in 
terms of some parametric family of stochastic processes and estimate 
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the parameters using statistical techniques, is to abandon any attempt 
at understanding the fundamentals of the market. Understandably, any 
such idea was anathema to right-thinking economists. 

When considering option pricing problems, however, the situation is 
fundamentally different. If the price of a financial asset at time t is St , 
then the value of a call option on that asset exercised at time T with 
strike K is HT max(ST −K,0) so that HT is a deterministic function of =
ST .1 This is why call options are described as derivative securities. The 
option pricing problem is not to explain why the price ST is what it is, but 
simply to explain what is the relationship between the price of an asset 
and the price of a derivative security written on that asset. As Bache­
lier saw, and Black and Scholes conclusively established, this question 
is best addressed starting from a stochastic process description of the 
‘underlying asset’. It is not bundled up with any explanation as to why 
the underlying asset process takes the form it does. In fact, Bachelier 
did have the right approach, although not the complete answer, to the 
option pricing problem—and at least as good an answer as anyone for 
fifty years afterwards—and his service to posterity was to point Samuel-
son and others in the right direction at a time when the mathematical 
tools needed for a complete solution were lying there waiting to be used. 

Since it was not the norm at the time to include full references, it is 
impossible to know how much of the literature he was familiar with, but 
Bachelier’s work did not appear from an economic void. Abstract market 
models were already gaining importance. Starting in the middle of the 
nineteenth century several attempts had been made to construct a theory 
of stock prices. Notably, Bachelier’s development mirrors that of Jules 
Regnault, who, in 1853, presented a study of stock market variations. In 
the absence of new information which would influence the ‘true price’ of 
the stock, he believed that price fluctuations were driven by transactions 
on the exchange which were in turn driven by investors’ expectations. 
He likened speculation on the exchange to a game of dice, arguing that 
future price movements do not depend on those in the past and there are 
just two possible outcomes: an increase in price or a decrease in price, 
each with probability one-half. (These probabilities are subjective proba­
bilities arising from incomplete information, and different assessments 
of that information, on the part of the market players.) Regnault’s study 
of the relationship between time spans and price variations led him to 
his law of differences (loi des écarts) or square root law: the spread of the 

1A fuller description of options is given below. 
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prices is in direct proportion to the square root of the time spans. Bache­
lier provides a mathematical derivation of this law which governs what 
he calls the ‘coefficient of instability’, but Regnault was no mathemati­
cian and his theoretical justification is unconvincing. He represented the 
true price of a security during an interval as the centre of a circle with 
the interior of the circle representing all possible prices. The area of the 
circle grows linearly with time and so the deviations from the true price 
grow with the radius of the circle, which is the square root of time. Reg­
nault did, on the other hand, produce a convincing verification of his 
law, based on price data that he had compiled on the 3% rentes2 from 
1825 to 1862. 

Of course Bachelier was concerned not just with stocks, but also with 
the valuation of derivative securities. From the beginning of the nine­
teenth century, it was common to value stocks relative to a fixed bond. 
Instead of looking at the absolute values of the stocks, tables were com­
piled that compared their relative price differences with the chosen bond 
and grouped them according to the size of the fluctuations in these dif­
ferences. In the same way options were analysed relative to the underly­
ing security and, in 1870, Henri Lefèvre, former private secretary to Baron 
James de Rothschild, developed the geometric representation of option 
transactions employed by Bachelier thirty years later. Lefèvre even used 
this visual approach to develop ‘the abacus of the speculator’, a wooden 
board with moveable letters which investors could reposition to find the 
outcome of a decision on each type of option contract. This ingenious 
invention was similar to the autocompteur, a device that he had previ­
ously introduced for computing bets on racehorses.3 

Bachelier’s thesis begins with a detailed description of some of the 
derivative contracts available on the exchange and an explanation of how 
they operate. This is followed by their geometric representation. Next 
comes the random walk model. Once this model is in place, economics 
takes a back seat while he develops a remarkable body of original math­
ematics. Assuming only that the price evolves as a continuous, memo­
ryless process, homogeneous in time and space, he establishes what we 
now call the Chapman–Kolmogorov equation and deduces that the dis­
tribution of the price at a fixed time is Gaussian. He then considers the 
probability of different prices as a function of time and establishes the 

2Perpetual government bonds. They are described in detail below. 
3The autocompteur is described in a little more detail in Preda (2004), where some 

more detail of the contributions of Regnault and Lefèvre can be found. See also Taqqu 
(2001). 
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square root law. He presents an alternative derivation of this by consid­
ering the price process as a limit of random walks. The next step is the 
connection between the transition probabilities and Fourier’s heat equa­
tion, neatly translating Fourier’s law of heat flow into an analogous law 
of ‘probability flow’. There follow many pages of calculations of option 
prices under this model with comparisons to published prices. The final 
striking piece of mathematics is the calculation of the probability that 
the price will exceed a given level in a particular time interval. The cal­
culation uses the reflection principle, well known in the combinatorial 
setting as Bachelier himself points out, but his direct proof of this result 
is a thoroughly modern treatment with paths of the price process as the 
basic object of study. The two things in the thesis that stand out math­
ematically are the introduction of continuous stochastic processes and 
the concentration on their paths rather than their value at a fixed time 
as the fundamental object of study. There is sometimes a lack of rigour, 
but never a shortage of originality or sound intuition. 

Options and Rentes 

Option contracts have been traded for centuries. It is salutary to realize 
how sophisticated the financial markets were long ago. Richard Dale’s 
book The First Crash describes the London market of the late seven­
teenth and early eighteenth centuries, where forward contracts, put 
options (called ‘puts’) and call options (called ‘refusals’) were actively 
traded in Exchange Alley. It seems that the British were at the time a 
nation of inveterate gamblers. One could bet on all kinds of things: for 
example, one could buy annuities on the lives of third parties such as 
the Prince of Wales or the Pretender. Had they known, these luminaries 
might have taken comfort from the idea that a section of the population 
had a direct stake in their continued existence, but they would have been 
less pleased to discover that an equal and opposite section had a direct 
stake in their immediate demise. 

Like these annuities, options were simply a bet, and a dangerous one 
at that because of the huge amount of leverage involved. Think of a one-
year at-the-money call option on a stock4, for which the premium is 10% 
of the current stock price; thus a £1 investment buys options on £10 of 
stock. If the stock price fails to rise, the investment is simply lost. On 

4The strike price is the current price S0 and so the exercise value is max(S1 − S0,0), 
where S1 is the price in one year’s time. Here max(a, b) denotes the greater of two 
numbers a, b. 
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Figure 1.1. Returns from investing in asset (dashed line) and investing in call 
option (solid line) as functions of asset price at maturity date. Initial asset price 
is 100. 
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Figure 1.2. Returns from investing in option strategy with money-back guar­
antee return (solid line) and simple investment strategy with money-back guar­
antee. 

the other hand if it rises by 20% then the option pays £2, a 100% return 
on the investment (as opposed to the 20% return gained by investing in 
the stock itself). The option investor is taking a massive risk—the risk 
of losing his entire investment—to back his view that the price will rise. 
For this reason option contracts have always had a slightly disreputable 
air about them, which continues to the present day. Lawsuits are regu­
larly taken out by aggrieved parties claiming that the risks in option-like 
investments were not properly explained to them. 

Figure 1.1 shows the return as a function of price for simple invest­
ment and for investment in options. Viewed in this way, a ‘naked’ posi­
tion in options does seem like playing with fire. Nonetheless, by mixing 
with other investments, the buyer of an option can take advantage of 
leveraged returns while limiting his downside loss liabilities. For exam­
ple, investment products are sometimes offered that guarantee investors 
at least their ‘money back’ after, say, five years. Suppose the interest 
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rate for a five-year deposit is 4%. Then a deposit of £82.19 matures with 
a value of £100 in five years’ time. The investment company can offer 
the money-back guarantee by investing £82.19 of each £100 in this way 
and ‘playing the market’ with the remaining £17.81. Figure 1.2 shows 
the return as a function of underlying asset for investment in the asset 
itself or in options as described above. Arguably, the latter provides a 
more attractive return profile to investors: there is the possibility of a 
substantial gain and the downside is limited to interest lost by not just 
keeping the money in the bank. 

A more benign, and economically far more important, use of options 
is in connection with hedging risks. Used in this way, an option is not a 
leveraged investment but, on the contrary, is expressly designed to offset 
risk. This effect is closely related to a simpler transaction, the forward 
contract. Suppose Alice in London wants to buy, off-plan, a flat on the 
Costa del Sol. The agreed price is €600,000, to be paid when the building 
is completed in one year’s time. This is equal to £400,000 at today’s 
exchange rate of €1.5 : £1. But of course Alice now has exchange rate 
risk: if the rate of exchange were to fall to 1.4 : 1, a not grossly improbable 
contingency, Alice’s bill rises by an unpleasant £28,571. She can protect 
herself against this in the following way. Let us say that Alice is able to 
borrow in England at an annual rate of 6%, and has a deposit account 
in Spain paying 2%. If she borrows £600,000/(1.5 × 1.02) £392,157,=
converts it into euros and deposits this sum in the Spanish account, 
the value of the account in one year will be exactly the €600,000 she 
has agreed to pay. But meanwhile her negative balance in England will 
be £392,157 × 1.06 £415,686, so the effective exchange rate for the =
transaction is 600,000/415,686 1.443, which is the rate she should = 
be allowing for when agreeing the price. But, in addition to protecting 
herself against a loss, Alice has also protected herself against a profit: 
if the foreign exchange rate were instead to move to 1.6, Alice would, 
in retrospect, have been better off sitting back and taking the profit of 
£25,000. What she wants is the best of both worlds: a fixed exchange rate 
X and the right to use either that rate or the market spot rate, whichever 
is the more favourable. This is the classic call option. By buying a call 
option, Alice is in effect insuring herself against the exchange rate falling 
below X, so she should pay an insurance premium for that. What that 
premium should be is the option pricing problem. 

The options that Bachelier was concerned with were written on les 
rentes, perpetual French government bonds. City or state government 
bonds have a long history, intricately bound up with the need to raise 
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money to wage war and to pay reparations after defeat.5 In the earliest 
examples the buyer was given little choice in the matter, but in 1522 
perpetual annuities called rentes were floated free of coercion, secured 
by the tax on wine. Under these contracts the state undertook to pay 
an annuity for an indefinite period. They did not repay the principal 
although they did reserve the right to redeem the contract at any time. 
It did not take the rentiers long to appreciate the benefits of having 
taxes imposed on their behalf and they soon offered additional loans. 
But rentes have a chequered history. Twice in the seventeenth century 
payments were simply suspended. Finance ministers disallowed rentes 
created by their predecessors and created new ones, there was no uni­
formity in conditions and no clear record of the outstanding government 
obligation. Each war saw more issues so that, for example, between 1774 
and 1789 the total government debt tripled. The bad credit of the rev­
olutionary government led them to issue assignats, obligations suppos­
edly backed by land seized from nobility and the church, which bore 
interest and were to be redeemed in five years. But the interest was 
reduced and then abolished and the assignats were issued in smaller 
and smaller denominations so that they eventually became no more than 
paper money which lost all value if they were not redeemed. Finally, 
in 1797, they were declared valueless. In the same year the two-thirds 
bankruptcy law was passed whereby only one-third of the interest on 
the national debt and one-third of pensions was paid in cash, with the 
balance in land warrants of little or no real value. All confidence in the 
system was lost. 

It was Napoleon who reformed the French finances. Starting in 1797 he 
established a budget, increased taxes and forcibly refunded the national 
debt through an issue of 5% rentes. All valid loans and titles to rentes 
were recorded in the Grand Livre, the great book of public debt, which 
had been created in 1793, and France entered the modern era of uni­
form rentes. To service the debt, Napoleon reestablished the caisse 
d’amortissement, which he deposited, in return for shares, in the Banque 
de France. This semi-private organization, created by a group of his sup­
porters in 1800, was not only granted the monopoly on Parisian ban­
knotes, it also managed the rentes. 

The nineteenth century was a period of political turmoil in France, 
nonetheless there was a large growth in banking and increasingly orderly 
finance. The rentes recovered quickly from successive political crises 

5For a more detailed history, see Homer and Sylla (2005). 
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and although the interest was progressively reduced during the course 
of the century, by 1900 they were very popular with French investors as 
a relatively secure investment. Once issued their prices fluctuated, but 
the rentes had a nominal value, typically Fr 100, and paid a fixed return 
usually between 3% and 5%. At the time when Bachelier wrote his thesis, 
the nominal value of the debt was 26 billion francs (Taqqu 2001) and 
there was very considerable trade in rentes on the Paris Bourse, where 
they could be sold for cash or as forwards or options. 

In 1914 stock exchanges all over the world were forced to close and 
whilst this did not signal the death of the international bond market, the 
collapse of the French franc over the course of the century, losing 99% 
of its dollar value in the period 1900–1990, spelt the end of an era for 
the rentiers (Ferguson 2001). 

Gambling Strategies and Martingales 

In the introduction to his 1968 book Probability, Leo Breiman points out 
that probability theory as we know it today derives from two sources: 
the mathematics of measure theory on the one hand, and gambling on 
the other.6 Perhaps its unsavoury relationship with games of chance is 
at least partially responsible for the fact that probability took a long time 
to be regarded as a respectable branch of mathematics. The flavour is 
caught to perfection by William Makepeace Thackeray in Chapter 64 of 
Vanity Fair : 

There is no town of any mark in Europe but it has its little colony of 
English raffs—men whose names Mr. Hemp the officer reads out period­
ically at the Sheriffs’ Court—young gentlemen of very good family often, 
only that the latter disowns them; frequenters of billiard-rooms and 
estaminets, patrons of foreign races and gaming-tables. They people 
the debtors’ prisons—they drink and swagger—they fight and brawl— 
they run away without paying—they have duels with French and Ger­
man officers—they cheat Mr. Spooney at écarté—they get the money 
and drive off to Baden in magnificent britzkas—they try their infalli­
ble martingale and lurk about the tables with empty pockets, shabby 
bullies, penniless bucks… 

The ‘infallible martingale’ is a strategy for making a sure profit on 
games such as roulette in which one makes a sequence of independent 
bets. The strategy is to stake £1 (on, say, a specific number in roulette) 

6He credits Michel Loève and David Blackwell, respectively, for teaching him the two 
sides. 
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Figure 1.3. Harness with martingale. 

and keep doubling the stake until that number wins. When it does, all 
previous losses and more are recouped and one leaves the table with 
a profit. It does not matter how unfavourable the odds are, only that a 
winning play comes up eventually. In his memoirs, Casanova recounts 
winning a fortune at the roulette table playing a martingale, only to lose 
it a few days later. 

The word ‘martingale’ has several uses outside gambling. It can mean 
a strap attached to a fencer’s épée, or a strut under the bowsprit of 
a sailing boat, but the most common usage is equestrian: the martin­
gale refers to the strap of a horse’s harness that connects the girth to 
the noseband and prevents the horse from throwing back its head (see 
Figure 1.3). Like the gambling strategy, it allows free movement in one 
direction while preventing movement in the other. The mathematician 
Paul Halmos once sent J. L. Doob, who did more than any other single 
mathematician to develop the mathematical theory of martingales, an 
equestrian martingale. Doob had no idea what it was or why he had been 
sent it (Snell 2005). 

The martingale is not infallible, as the penniless bucks whose names 
Mr Hemp read out at the Sheriffs’ Court could attest. Nailing down why, 
in precise terms, had to await the development of the theory of martin­
gales (in the mathematical sense) by Doob in the 1940s. The term was 
introduced into probability theory by Ville in 1939, who initiated its use 
to describe the fortune of a player in a fair game rather than the gam­
bling strategy employed by that player. A martingale is then a stochastic 
processes Xt such that the expected value of the process at some future 
time, given its past history up to today, is equal to today’s value. We 
write this Xs E[Xt | Fs], t > s. Roulette is not a fair game: the player’s =
fortune is a supermartingale, meaning that the expected future value is 
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less than today’s value, Xs � E[Xt | Fs]. One of Doob’s key results is the 
optional sampling theorem. A  stopping time (or optional time in Doob’s 
parlance) is a random time whose occurrence by time t can be detected by 
observing the evolution of the process Xs for s � t. For example, the time 
of the first winning play in roulette is a stopping time. The optional sam­
pling theorem shows in particular that if Xt is a bounded supermartin­
gale (i.e. |Xt| � c for some constant c) and S, T are two stopping times 
such that S � T with probability 1, then XS � E[XT | FS], i.e. the super-
martingale inequality continues to hold if fixed times s, t are replaced 
by stopping times S, T . For a bounded martingale, XS = E[XT | FS]. 

Now suppose that Xt is the player’s fortune when he plays the mar­
tingale strategy at roulette and T is the time of the first winning play. 
Xt is a supermartingale since the odds are biased in favour of the bank. 
The conditions of the optional sampling theorem are not met since Xt 
is not bounded (losses double up until the first winning play occurs, but 
we do not know how long we have to wait for this). And indeed the con­
clusion of the theorem does not hold either: by definition XT > X0, so  
E[XT ] > E[X0]. Suppose, however, that there is a house limit : the player 
has to stop if his accumulated losses ever reach some prescribed level 
K. The conditions of the optional sampling theorem are satisfied for the 
process7 Yt Xt∧R, the player’s fortune up to the point R where he is =
obliged to quit, so E[XT∧R] � X0. But this inequality can only hold if 
there is a positive probability that R < T , that is, there must be a chance 
that the house limit is reached before the winning play occurs. Thus any 
house limit, however large, turns the ‘martingale’ into an unfavourable 
strategy in which the player may lose his shirt. Every house has a limit 
of some kind. 

The martingale idea plays a big part in Bachelier’s analysis, although 
he does not define it in any formal way and, of course, the name itself 
did not come into mathematical currency for a further thirty-nine years. 
Bachelier’s dictum (perhaps inherited from Regnault) was (see p. 28) 
‘L’espérance mathematique du spéculateur est nulle’ (‘the speculator’s 
expected return is zero’). The argument for this is based on market sym­
metry: any trade has two parties, a buyer and a seller, and they must 
agree on a price. It follows that there cannot be any consistent bias in 
favour of one or the other, so today’s price must be equal to the expected 
value of the price at any date in the future: exactly the martingale prop­
erty. In Bachelier’s day, the option premium was paid in the form of a 

7t ∧ s denotes the lesser of s and t. 
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‘forfeit’ paid at the exercise time of the option, and only paid if it was 
not exercised. Bachelier’s main pricing formula is obtained by taking the 
price process as scaled Brownian motion and computing the value of the 
forfeit such that the whole transaction has zero value. Given Bachelier’s 
price model this answer is actually correct but not, as we shall see, for 
quite the reasons Bachelier thought it was. 

Deciding when to quit a game is a very simple kind of gambling (or 
investment) strategy. A correct theory of option pricing requires consid­
eration of more sophisticated strategies in which funds are switched 
between different traded assets in a quite complicated way. Suppose 
there are N traded assets8 with price processes St (St

(1), . . . , St
(N) ). A=

trading strategy is an N-vector process θ with the interpretation that 
the ith component θt

(i) is the number of units of asset i held at time 
t. An obvious requirement is that θt must be non-anticipative, i.e. can 
depend only on market variables that have been observed up to time t. 
We say that θt is ‘Ft-adapted’, or just ‘adapted’, where Ft denotes the 
history of the market up to time t. We call θt a simple trading strategy on 
the time interval [0, T ] if there is a sequence of fixed or stopping times 
0 τ0 < τ1 < < τm � T such that θt θτi for t ∈ [τi, τi+1), that = · · · =
is, trades are executed only at a finite number of times τi. Let us write 
ηi θτi . The strategy is self-financing if ηi Sτi ηi Sτi , which = · +1 = +1 · +1 

just says that the trade at time τi+1 only rearranges the investment port­
folio, it does not change its total value. It is a matter of algebra to verify 
that the following equality holds for any simple self-financing strategy, ∫ T 

θT ST − θ0 S0 θt dSt, (1.1)· · = 
0 

·

where the right-hand side denotes the sum suggested by the notation ∫ T N ∫ T 

0 
θt · dSt = 

i 1 0 
θt
(i) dSt

(i) 

=
N { m−1 } 

= 
i 1 

ηi (Si )+
k 0 

ηik(S
(i)
+1 
− S(i)) . (1.2)m τ − Sτim τk τk 

= =

Equation (1.1) states that the change in portfolio value (on the left-
hand side) is equal to the ‘gain from trade’ (on the right-hand side). We 
can use (1.1) as the definition of ‘self-financing’, a definition which will go 

8In the classic Black–Scholes set-up, N 2 :  S(1) St is the price of the asset on which 
rt 

= t =
the option is written and St

(2) e is a money-market account paying continuously com­=
pounding interest at rate r . 
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beyond the case of simple strategies. Black–Scholes style option pricing 
is largely concerned with finding self-financing trading strategies θt such 
that the final portfolio value θT ST is equal to some pre-specified ran­·
dom variable, to wit, the option exercise value. Invariably, this cannot be 
achieved using simple strategies and we have to consider more general 
strategies which are in some sense limits of simple ones. The process 
of constructing these strategies and defining the corresponding gains 
from trade is exactly the process of constructing stochastic integrals 
with respect to martingales and semimartingales which was begun by Itô 
in the 1940s and completed by Meyer and Dellacherie in the late 1970s. 
As Itô explains in the foreword to the volume of his selected papers pub­
lished in 1986, he noticed that, starting from any given instant, a Marko­
vian process would perform a time homogeneous differential process for 
the infinitesimal future. This led him to the notion of a stochastic dif­
ferential equation governing the paths of the particle which could then 
be made mathematically rigorous by writing it in integral form, but this 
intuition requires that when defining the integral of a simple integrand, 
the integrand should be evaluated at the left-hand end point of the inter­
val, as it is in equation (1.2) above. In equation (1.2) we arrived at this 
definition from the natural economic requirement that the investment 
must be decided on before subsequent price moves are revealed. Thus 
Itô–Meyer–Dellacherie stochastic integrals are exactly the ones required 
for economic applications. 

In J. L. Doob’s obituary of William Feller in 1970 he writes: 

Mathematicians could manipulate equations inspired by events and 
expectations long before these concepts were formalized mathemati­
cally as measurable sets and integrals. But deeper and subtler inves­
tigations had to wait until the blessing and curse of direct physical 
significance had been replaced by the bleak reliability of abstract math­
ematics. 

The deep and subtle mathematics that underlies today’s financial mar­
kets is all-pervasive in engineering and the sciences. It has long since 
emerged from the wilderness of bleak reliability and is once again 
blessed and cursed. 

And now to Bachelier. The next chapter is a translation of Louis Bache­
lier’s thesis. We have endeavoured to reflect his written style. We have 
used two types of annotation: comment boxes to explain the financial 
contracts, and traditional footnotes for clarifications, corrections and 
historical comments. Bachelier’s own footnotes are unnumbered and in 
italics. The original thesis itself is reproduced in facsimile in Chapter 4. 
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