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Mesopotamia, 1800 BCE

We would more properly have to call
“Babylonian” many things which the Greek
tradition had brought down to us as
“Pythagorean.”

—Otto Neugebauer, quoted in Bartel van der Waerden, 
Science Awakening, p. 77

The vast region stretching from the Euphrates and Tigris Rivers in the east to
the mountains of Lebanon in the west is known as the Fertile Crescent. It was
here, in modern Iraq, that one of the great civilizations of antiquity rose to
prominence four thousand years ago: Mesopotamia. Hundreds of thousands of
clay tablets, found over the past two centuries, attest to a people who flour-
ished in commerce and architecture, kept accurate records of astronomical
events, excelled in the arts and literature, and, under the rule of Hammurabi,
created the first legal code in history. Only a small fraction of this vast archeo-
logical treasure trove has been studied by scholars; the great majority of tablets
lie in the basements of museums around the world, awaiting their turn to be
deciphered and give us a glimpse into the daily life of ancient Babylon.

Among the tablets that have received special scrutiny is one with the unas-
suming designation “YBC 7289,” meaning that it is tablet number 7289 in the
Babylonian Collection of Yale University (fig. 1.1). The tablet dates from the
Old Babylonian period of the Hammurabi dynasty, roughly 1800–1600 bce. It
shows a tilted square and its two diagonals, with some marks engraved along
one side and under the horizontal diagonal. The marks are in cuneiform
(wedge-shaped) characters, carved with a stylus into a piece of soft clay which
was then dried in the sun or baked in an oven. They turn out to be numbers,
written in the peculiar Babylonian numeration system that used the base 60.
In this sexagesimal system, numbers up to 59 were written in essentially our
modern base-ten numeration system, but without a zero. Units were written as
vertical Y-shaped notches, while tens were marked with similar notches written
horizontally. Let us denote these symbols by  and —, respectively. The number
23, for example, would be written as — — . When a number exceeded 59,
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Figure 1.1. YBC 7289



it was arranged in groups of 60 in much the same way as we bunch numbers
into groups of ten in our base-ten system. Thus, 2,413 in the sexagesimal system
is 40 × 60 + 13, which was written as — — — — — (often a group of
several identical symbols was stacked, evidently to save space).

Because the Babylonians did not have a symbol for the “empty slot”—our
modern zero—there is often an ambiguity as to how the numbers should be
grouped. In the example just given, the numerals — — — — — could
also stand for 40 × 602 + 13 × 60 = 144,780; or they could mean 40/60 +
13 = 13.166, or any other combination of powers of 60 with the coefficients
40 and 13. Moreover, had the scribe made the space between — — — — and
— too small, the number might have erroneously been read as — — —
— —, that is, 50 × 60 + 3 = 3,003. In such cases the correct interpretation
must be deduced from the context, presenting an additional challenge to schol-
ars trying to decipher these ancient documents.

Luckily, in the case of YBC 7289 the task was relatively easy. The number
along the upper-left side is easily recognized as 30. The one immediately un-
der the horizontal diagonal is 1;24,51,10 (we are using here the modern nota-
tion for writing Babylonian numbers, in which commas separate the sexagesi-
mal “digits,” and a semicolon separates the integral part of a number from its
fractional part). Writing this number in our base-10 system, we get
1 + 24/60 + 51/602 + 10/603 = 1.414213, which is none other than the decimal

value of , accurate to the nearest one hundred thousandth! And when this
number is multiplied by 30, we get 42.426389, which is the sexagesimal num-
ber 42;25,35—the number on the second line below the diagonal. The conclu-
sion is inescapable: the Babylonians knew the relation between the length of 

the diagonal of a square and its side, . But this in turn means that they
were familiar with the Pythagorean theorem—or at the very least, with its spe-
cial case for the diagonal of a square (d2 = a2 + a2 = 2a2)—more than a thou-
sand years before the great sage for whom it was named.

Two things about this tablet are especially noteworthy. First, it proves that
the Babylonians knew how to compute the square root of a number to a re-
markable accuracy—in fact, an accuracy equal to that of a modern eight-digit
calculator.1 But even more remarkable is the probable purpose of this particu-
lar document: by all likelihood, it was intended as an example of how to find
the diagonal of any square: simply multiply the length of the side by
1;24,51,10. Most people, when given this task, would follow the “obvious”
but more tedious route: start with 30, square it, double the result, and take the

square root: , rounded to four places.
But suppose you had to do this over and over for squares of different sizes;
you would have to repeat the process each time with a new number, a rather
tedious task. The anonymous scribe who carved these numbers into a clay
tablet nearly four thousand years ago showed us a simpler way: just multiply

the side of the square by (fig. 1.2). Some simplification!2

d = + = =30 30 1800 42 42642 2 .

d a= 2
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But there remains one unanswered question: why did the scribe choose a
side of 30 for his example? There are two possible explanations: either this
tablet referred to some particular situation, perhaps a square field of side 30 for
which it was required to find the length of the diagonal; or—and this is more
plausible—he chose 30 because it is one-half of 60 and therefore lends itself to
easy multiplication. In our base-ten system, multiplying a number by 5 can
be quickly done by halving the number and moving the decimal point one
place to the right. For example, 2.86 × 5 = (2.86/2) × 10 = 1.43 × 10 = 14.3 
(more generally, ). Similarly, in the sexagesimal system multi-
plying a number by 30 can be done by halving the number and moving the
“sexagesimal point” one place to the right .

Let us see how this works in the case of YBC 7289. We recall that
1;24,51,10 is short for 1 + 24/60 + 51/602 + 10/603. Dividing this by 2, we get

which we must rewrite so that each coefficient of a power 

of 60 is an integer. To do so, we replace the 1/2 in the first and third terms by

by 30/60, getting Finally,

moving the sexagesimal point one place to the right gives us 42;25,35, the
length of the diagonal. It thus seems that our scribe chose 30 simply for prag-
matic reasons: it made his calculations that much easier.

❖ ❖ ❖

If YBC 7289 is a remarkable example of the Babylonians’ mastery of ele-
mentary geometry, another clay tablet from the same period goes even further:
it shows that they were familiar with algebraic procedures as well.2 Known as
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Plimpton 322 (so named because it is number 322 in the G. A. Plimpton Col-
lection at Columbia University; see fig. 1.3), it is a table of four columns,
which might at first glance appear to be a record of some commercial transac-
tion. A close scrutiny, however, has disclosed something entirely different: the
tablet is a list of Pythagorean triples, positive integers (a, b, c) such that
a2 + b2 = c2. Examples of such triples are (3, 4, 5), (5, 12, 13), and (8, 15, 17).
Because of the Pythagorean theorem,3 every such triple represents a right tri-
angle with sides of integer length.

Unfortunately, the left edge of the tablet is partially missing, but traces of
modern glue found on the edges prove that the missing part broke off after
the tablet was discovered, raising the hope that one day it may show up on
the antiquities market. Thanks to meticulous scholarly research, the missing
part has been partially reconstructed, and we can now read the tablet with rel-
ative ease. Table 1.1 reproduces the text in modern notation. There are four
columns, of which the rightmost, headed by the words “its name” in the orig-
inal text, merely gives the sequential number of the lines from 1 to 15. The
second and third columns (counting from right to left) are headed “solving
number of the diagonal” and “solving number of the width,” respectively;
that is, they give the length of the diagonal and of the short side of a rectan-
gle, or equivalently, the length of the hypotenuse and the short leg of a right
triangle. We will label these columns with the letters c and b, respectively. As
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an example, the first line shows the entries b = 1,59 and c = 2,49, which rep-
resent the numbers 1 × 60 + 59 = 119 and 2 × 60 + 49 = 169. A quick calcu-

lation gives us the other side as hence
(119, 120, 169) is a Pythagorean triple. Again, in the third line we read
b = 1,16,41 = 1 × 602 + 16 × 60 + 41 = 4601, and c = 1,50,49 = 1 × 602 + 50 ×
60 + 49 = 6649; therefore, giv-
ing us the triple (4601, 4800, 6649).

The table contains some obvious errors. In line 9 we find b = 9,1 =
9 × 60 + 1 = 541 and c = 12, 49 = 12 × 60 + 49 = 769, and these do not form
a Pythagorean triple (the third number a not being an integer). But if we
replace the 9,1 by 8,1 = 481, we do indeed get an integer value for a:

resulting in the triple (481, 600, 769).
It seems that this error was simply a “typo”; the scribe may have been momen-
tarily distracted and carved nine marks into the soft clay instead of eight; and
once the tablet dried in the sun, his oversight became part of recorded history.

a = − = =769 481 360 000 6002 2 ,

a = − = =6649 4601 23 040 000 48002 2 ,

a = − = =169 119 14400 1202 2 ;

Table 1.1
Plimpton 322

(c/a)2 b c

[1,59,0,]15 1,59 2,49 1

[1,56,56,]58,14,50,6,15 56,7 3,12,1 2

[1,55,7,]41,15,33,45 1,16,41 1,50,49 3

[1,]5[3,1]0,29,32,52,16 3,31,49 5,9,1 4

[1,]48,54,1,40 1,5 1,37 5

[1,]47,6,41,40 5,19 8,1 6

[1,]43,11,56,28,26,40 38,11 59,1 7

[1,]41,33,59,3,45 13,19 20,49 8

[1,]38,33,36,36 9,1 12,49 9

1,35,10,2,28,27,24,26,40 1,22,41 2,16,1 10

1,33,45 45 1,15 11

1,29,21,54,2,15 27,59 48,49 12

[1,]27,0,3,45 7,12,1 4,49 13

1,25,48,51,35,6,40 29,31 53,49 14

[1,]23,13,46,40 56 53 15

Note: The numbers in brackets are reconstructed.



Again, in line 13 we have b = 7,12,1 = 7 × 602 + 12 × 60 + 1 = 25 921 and c =
4,49 = 4 × 60 + 49 = 289, and these do not form a Pythagorean triple; but we
may notice that 25 921 is the square of 161, and the numbers 161 and 289 do
form the triple (161, 240, 289). It seems the scribe simply forgot to take the
square root of 25 921. And in row 15 we find c = 53, whereas the correct entry
should be twice that number, that is, 106 = 1,46, producing the triple (56, 90,
106).4 These errors leave one with a sense that human nature has not changed
over the past four thousand years; our anonymous scribe was no more guilty
of negligence than a student begging his or her professor to ignore “just a little
stupid mistake” on the exam.5

The leftmost column is the most intriguing of all. Its heading again men-
tions the word “diagonal,” but the exact meaning of the remaining text is not
entirely clear. However, when one examines its entries a startling fact comes
to light: this column gives the square of the ratio c/a, that is, the value of csc2 A,
where A is the angle opposite side a and csc is the cosecant function studied in
trigonometry (fig. 1.4). Let us verify this for line 1. We have b = 1,59 = 119
and c = 2,49 = 169, from which we find a = 120. Hence (c/a)2 = (169/120)2 =
1.983, rounded to three places. And this indeed is the corresponding entry in
column 4: 1;59,0,15 = 1 + 59/60 + 0/602 + 15/603 = 1.983. (We should note
again that the Babylonians did not use a symbol for the “empty slot” and
therefore a number could be interpreted in many different ways; the correct in-
terpretation must be deduced from the context. In the example just cited, we
assume that the leading 1 stands for units rather than sixties.) The reader may
check other entries in this column and confirm that they are equal to (c/a)2.

Several questions immediately arise: Is the order of entries in the table ran-
dom, or does it follow some hidden pattern? How did the Babylonians find
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those particular numbers that form Pythagorean triples? And why were they
interested in these numbers—and in particular, in the ratio (c/a)2—in the first
place? The first question is relatively easy to answer: if we compare the values
of (c/a)2 line by line, we discover that they decrease steadily from 1.983 to
1.387, so it seems likely that the order of entries was determined by this se-
quence. Moreover, if we compute the square root of each entry in column 4—
that is, the ratio c/a = csc A—and then find the corresponding angle A, we dis-
cover that A increases steadily from just above 45° to 58°. It therefore seems
that the author of this text was not only interested in finding Pythagorean
triples, but also in determining the ratio c/a of the corresponding right trian-
gles. This hypothesis may one day be confirmed if the missing part of the tablet
shows up, as it may well contain the missing columns for a and c/a. If so,
Plimpton 322 will go down as history’s first trigonometric table.

As to how the Babylonian mathematicians found these triples—including
such enormously large ones as (4601, 4800, 6649)—there is only one plausi-
ble explanation: they must have known an algorithm which, 1,500 years later,
would be formalized in Euclid’s Elements: Let u and v be any two positive in-
tegers, with u > v; then the three numbers

a = 2uv, b = u2 − v2, c = u2 + v2 (1)

form a Pythagorean triple. (If in addition we require that u and v are of oppo-
site parity—one even and the other odd—and that they do not have any com-
mon factor other than 1, then (a, b, c) is a primitive Pythagorean triple, that is,
a, b, and c have no common factor other than 1.) It is easy to confirm that the
numbers a, b, and c as given by equations (1) satisfy the equation a2 + b2 = c2:

a2 + b2 = (2uv)2 + (u2 − v2)2

= 4u2v2 + u4 − 2u2v2 + v4

= u4 + 2u2v2 + v4

= (u2 + v2)2 = c2.

The converse of this statement—that every Pythagorean triple can be found in
this way—is a bit harder to prove (see Appendix B).

Plimpton 322 thus shows that the Babylonians were not only familiar with
the Pythagorean theorem, but that they knew the rudiments of number theory
and had the computational skills to put the theory into practice—quite remark-
able for a civilization that lived a thousand years before the Greeks produced
their first great mathematician.

Notes and Sources

1. For a discussion of how the Babylonians approximated the value of , see Ap-
pendix A.

2. The text that follows is adapted from Trigonometric Delights and is based on
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Otto Neugebauer, The Exact Sciences in Antiquity (1957; rpt. New York: Dover, 1969),
chap. 2. See also Eves, pp. 44–47.

3. More precisely, its converse: if the sides of a triangle satisfy the equation
a2 + b2 = c2, the triangle is a right triangle.

4. This, however, is not a primitive triple, since its members have the common fac-
tor 2; it can be reduced to the simpler triple (28, 45, 53). The two triples represent sim-
ilar triangles.

5. A fourth error occurs in line 2, where the entry 3,12,1 should be 1,20,25, produc-
ing the triple (3367, 3456, 4825). This error remains unexplained.
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Sidebar 1

Did the Egyptians Know It?

The Egyptians must have used this formula
[a2 + b2 = c2] or they couldn’t have built their
pyramids, but they have never expressed it as a
useful theory.

—Joy Hakim, The Story of Science, p. 78

Five hundred miles to the southwest of Mesopotamia, along the Nile
Valley, thrived a second great ancient civilization, Egypt. The two nations
coexisted in relative peace for over three millennia, from about 3500 bce
to the time of the Greeks. Both developed advanced writing skills, were
keen observers of the sky, and kept meticulous records of their military
victories, commercial transactions, and cultural heritage. But whereas the
Babylonians recorded all this on clay tablets—a virtually indestructible
writing material—the Egyptians used papyrus, a highly fragile medium.
Were it not for the dry desert climate, their writings would have long
been disintegrated. Even so, our knowledge of ancient Egypt is less ex-
tensive than that of its Mesopotamian contemporary; what we do know
comes mainly from artifacts found in the burial sites of the ruling Egypt-
ian dynasties, from a handful of surviving papyrus scrolls, and from hi-
eroglyphic inscriptions on their temples and monuments.

Most famous of all Egyptian shrines are the pyramids, built over a
period of 1,500 years to glorify the pharaoh rulers during their lives,
and even more so after their deaths. A huge body of literature has been
written on the pyramids; regrettably, much of this literature is more fic-
tion than fact. The pyramids have attracted a cult of worshipers who
found in these monuments hidden connections to just about everything
in the universe, from the numerical values of π and the Golden Ratio to
the alignment of planets and stars. To quote the eminent Egyptologist
Richard J. Gillings: “Authors, novelists, journalists, and writers of fiction
found during the nineteenth century a new topic [the pyramids], a new
idea to develop, and the less that was known and clearly understood



about the subject, the more freely could they give rein to their imagina-
tion.”1

Certainly, building such a huge monument as the Great Pyramid of
Cheops—756 feet on each side and soaring to a height of 481 feet—
required a good deal of mathematical knowledge, and surely that knowl-
edge must have included the Pythagorean theorem. But did it? Our main
source of information on ancient Egyptian mathematics comes from
the Rhind Papyrus, a collection of eighty-four problems dealing with
arithmetic, geometry, and rudimentary algebra. Discovered in 1858 by
the Scottish Egyptologist A. Henry Rhind, the papyrus is 18 feet long
and 13 inches wide. It survived in remarkably good condition and is the
oldest mathematics textbook to reach us nearly intact (it is now in the
British Museum in London).2 The papyrus was written about 1650 bce
by a scribe named A’h-mose, commonly known in the West as Ahmes.
But it was not his own work; as A’h-mose tells us, he merely copied it
from an older document dated to about 1800 bce. Each of the eighty-
four problems is followed by a detailed step-by-step solution; some
problems are accompanied by drawings. Most likely the work was a
training manual for use in a school of scribes, for it was the sect of royal
scribes to whom all literary tasks were assigned—reading, writing, and
arithmetic, our modern “Three R’s.”

Of the eighty-four problems in the Rhind Papyrus, twenty are geo-
metric in nature, dealing with such questions as finding the volume of a
cylindrical granary or the area of a field of given dimensions (this latter
problem was of paramount importance to the Egyptians, whose liveli-
hood depended on the annual inundation of the Nile). Five of these
problems specifically concern the pyramids; yet not once is there any
reference in them to the Pythagorean theorem, either directly or by im-
plication. One concept that does appear repeatedly is the slope of the side
of a pyramid, a question of considerable significance to the builders, who
had to ensure that all four faces maintained an equal and uniform slope.3

But the Pythagorean theorem? Not once.
Of course, the absence of evidence is not evidence of absence, as

archeologists like to point out. Still, in all likelihood the Rhind Papyrus
represented a summary of the kind of mathematics a learned person—a
scribe, an architect, or a tax collector—might encounter in his career,
and the absence of any reference to the Pythagorean theorem strongly
suggests that the Egyptians did not know it.4 It is often said that they
used a rope with knots tied at equal intervals to measure distances; the
3-4-5 knotted rope, so the logic goes, must have led the Egyptians to
discover that a 3-4-5 triangle is a right triangle and thus, presumably, to
the the fact that 32 + 42 = 52. But there is no evidence whatsoever to sup-
port this hypothesis. It is even less plausible that they used the 3-4-5
rope to construct a right angle, as some authors have stated; it would
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have been so much easier to use a plumb line for that purpose. The case
is best summarized by quoting three eminent scholars of ancient mathe-
matics:

In 90% of all the books [on the history of mathematics], one finds
the statement the Egyptians knew the right triangle of sides 3, 4
and 5, and that they used it for laying out right angles. How much
value has this statement? None!

—Bartel Leendert van der Waerden.5

There is no indication that the Egyptians had any notion even of
the Pythagorean Theorem, despite some unfounded stories about
“harpedonaptai” [rope stretchers], who supposedly constructed
right triangles with the aid of a string with 3 + 4 + 5 = 12 knots.

—Dirk Jan Struik.6

There seems to be no evidence that they knew that the triangle (3,
4, 5) is right-angled; indeed, according to the latest authority (T. Eric
Peet, The Rhind Mathematical Papyrus, 1923), nothing in Egyptian
mathematics suggests that the Egyptians were acquainted with this
or any special cases of the Pythagorean Theorem.

—Sir Thomas Little Heath.7

Of course, archeologists may some day unearth a document showing a
square with the lengths of its side and diagonal inscribed next to them,
as in YBC 7289. But until that happens, we cannot conclude that the
Egyptians knew of the relation between the sides and the hypotenuse of
a right triangle.

Notes and Sources

1. Mathematics in the Time of the Pharaohs (1972; rpt. New York: Dover,
1982), p. 237.

2. See Arnold Buffum Chace, The Rhind Mathematical Papyrus: Free Trans-
lation and Commentary with Selected Photographs, Transcriptions, Translitera-
tions and Literal Translations (Reston, Va.: National Council of Teachers of
Mathematics, 1979).

3. On this subject, see Trigonometric Delights, pp. 6–9.
4. According to Smith (vol. 2, p. 288), a papyrus of the Twelfth Dynasty (ca.

2000 bce), discovered at Kahun, refers to four Pythagorean triples, one of
which is 12 + (3⁄4)2 = (11⁄4)2 (which is equivalent to the triple (3, 4, 5) when
cleared of fractions). Whether these triples refer to the sides of right triangles is
not known.

5. Science Awakening, trans. Arnold Dresden (New York: John Wiley,
1963), p. 6. Van der Waerden goes on to give the reasons for making this state-
ment, adding that “repeated copying [of the assumption that the Egyptians used

Did the Egyptians Know It? ❖ 15



the 3-4-5 sided triangle to lay out right angles] made it a ‘universally known
fact.’ ”

6. Concise History of Mathematics (New York: Dover, 1967), p. 24. Struik
(1894–2000) was a Dutch-born scholar who taught at the Massachusetts Insti-
tute of Technology from 1926 to 1960. In his obituary, Evelyn Simha, director of
the Dibner Institute for the History of Science and Technology at MIT, described
Struik as “the instructor responsible for half the world’s basic knowledge of the
history of mathematics” (New York Times, October 26, 2000, p. A29). Active
almost to the end, he died at the age of 106.

7. The Thirteen Books of Euclid’s Elements, vol. 1 (London: Cambridge Uni-
versity Press, 1962), p. 352.
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