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The Most Dangerous Equation 

�.�. IntrOductIOn 

What
constitutes
a
dangerous
equation?
There
are
two
obvious
inter
pretations: some equations are dangerous if you know the equation 
and others are dangerous if you do not. In this chapter I will not ex-
plore the dangers an equation might hold because the secrets within 
its bounds open doors behind which lie terrible peril. Few would dis-
agree that the obvious winner in this contest would be Einstein’s iconic 
equation 

E 5MC 2 (1.1) 

for it provides a measure of the enormous energy hidden within ordi-
nary matter. Its destructive capability was recognized by Leo Szilard, 
who then instigated the sequence of events that culminated in the con-
struction of atomic bombs. 

This
is
not,
however,
the
direction
I
wish
to
pursue.
Instead,
I
am

interested in equations that unleash their danger, not when we know 
about them, but rather when we do not; equations that allow us to 
understand things clearly, but whose absence leaves us dangerously 

� 



__ 

ignorant.*
 There
 are
 many
 plausible
 candidates
 that
 seem
 to
 fill
 the

bill. But I feel that there is one that surpasses all others in the havoc 
wrought by ignorance of it over many centuries. It is the equation that 
provides us with the standard deviation of the sampling distribution 
of the mean; what might be called De Moivre’s equation: 

5s/√n . (1.2) sx̄ 

For
 those
 unfamiliar
 with
 De
 Moivre’s
 equation
 let
 me
 offer
 a
 brief

aside to explain it. 

an aside Explaining de Moivre’s Equation 
The
Greek
 letter
s, with no subscript, represents a measure of the 
variability of a data set (its standard deviation). So if we measure, for 
example, the heights of, say, 1000 students at a particular high 
school,
we
might
find
that
the
average
height
is
67
inches,
but
heights

might range from perhaps as little as 55 inches to as much as 80 
inches. A number that characterizes this variation is the standard 
deviation.
 Under
 normal
 circumstances
 we
 would
 find
 that
 about

two-thirds of all children in the sample would be within one stan-
dard deviation of the average. But now suppose we randomly grouped 
the 1000 children into 10 groups of 100 and calculated the average 
within
each
group.
The
variation
of
these
10
averages
would
likely
be


(Continued) 

* One way to conceive of the concept “danger” is as a danger function 

P(Y) 5P(Y|x 5 1) P(x 5 1) 1P(Y|x 50) P(x 50), 

where 

Y 5 the event of looking like an idiot, 
x 51 is the event of knowing the equation in question, 
x 50 is the event of not knowing the equation. 
| is mathematical notation meaning “given that” so that the expression 
P(Y|x51) is read as “the probability of looking like an idiot given 
that you know the equation.” 

This
equation
makes
explicit
the
two
aspects
of
what
constitutes
a
dangerous
equation.
It
also

indicates that danger is a product of the inherent danger and the probability of that situation 
occurring.
Thus
it
may
be
very
dangerous
not
to
know
that
the
mean
is
the
sum
of
the
observa
tions divided by n, but since most people know it, it is overall not a very dangerous equation. 
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(Continued) 

much smaller than s because it is likely that a very tall person in the 
group would be counterbalanced by a shorter person. De Moivre 
showed a relationship between the variability in the original data 
and the variability in the averages. He also showed how one could 
calculate the variability of the averages ( sx̄) by simply dividing the 
original variability by the square root of the number of individuals (n) 
that were combined to calculate the averages. And so the variability 
of the average of groups of 100 would be one-tenth that of the origi-
nal group. Similarly, if we wanted to reduce the variability in half, we 
would
need
groups
of
four;
to
cut
it
to
onefifth
we
would
need
groups

of
 25,
and
so
forth.
That
is
the
idea
behind
De
Moivre’s
equation.


Why have I decided to choose this simple equation as the most 
dangerous?
There
are
three
reasons,
related
to


(1)  the extreme length of time during which ignorance of it has 
caused confusion, 

(2)  the wide breadth of areas that have been misled, and 
(3)  the seriousness of the consequences that such ignorance has 

caused. 

In
the
balance
of
this
chapter
I
will
describe
five
very
different
situa
tions in which ignorance of De Moivre’s equation has led to billions of 
dollars of loss over centuries, yielding untold hardship; these are but a 
small sampling; there are many more. 

�.�. thE trIal Of thE Pyx: SIx cEnturIES 

Of MISundErStandIng 

In 1150, a century after the Battle of Hastings, it was recognized that 
the king could not just print money and assign to it any value he chose. 
Instead the coinage’s value must be intrinsic, based on the amount of 
precious materials in its makeup. And so standards were set for the 
weight of gold in coins—a guinea should weigh 128 grains (there are 
360 grains in an ounce). It was recognized, even then, that coinage 
methods were too imprecise to insist that all coins be exactly equal 
in weight, so instead the king and the barons, who supplied the Lon-
don Mint (an independent organization) with gold, insisted that coins 
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when tested* in the aggregate [say one hundred at a time] conform 
to the regulated size plus or minus some allowance for variability 
[1/400 of the weight] which for one guinea would be 0.32 grains and 
so, for the aggregate, 32 grains). Obviously, they assumed that vari-
ability decreased proportionally to the number of coins and not to its 
square root. 

This
deeper
understanding
lay
almost
six
hundred
years
in
the
fu
ture with De Moivre’s 1730 exploration of the binomial distribution.1,† 
The
costs
of
making
errors
are
of
two
types.
If
 the
average
of
all
the

coins was too light, the barons were being cheated, for there would be 
extra
 gold
 left
 over
 after
 minting
 the
 agreed
 number
 of
 coins.
 This

kind of error would easily have been detected and, if found, the direc-
tor
of
the
Mint
would
suffer
grievous
punishment.
But
if
the
variabil
ity were too great, it would mean that there would be an unacceptably 
large number of too heavy coins produced that could be collected, 
melted down, and recast with the extra gold going into the pockets of 
the minter. By erroneously allowing too much variability, the Mint 
could
stay
within
the
bounds
specified
and
still
make
extra
money
by

collecting
the
heavierthanaverage
coins
and
reprocessing
them.
The

fact that this error was able to continue for almost six hundred years 
provides strong support for De Moivre’s equation to be considered a 
strong candidate for the title of most dangerous equation. 

�.�. lIfE In thE cOuntry: a havEn Or a thrEat 

Figure
1.1
is
a
map
of
ageadjusted
kidney
cancer
rates.
The
counties

shaded are those counties that are in the lowest decile of the cancer 
distribution. We note that these healthy counties tend to be very rural, 
midwestern, southern, and western counties. It is both easy and tempt-
ing to infer that this outcome is directly due to the clean living of the 
rural lifestyle—no air pollution, no water pollution, access to fresh 
food without additives, etc. 

Figure 1.2 is another map of age adjusted kidney cancer rates. 

* The
box
the
coins
were
kept
in
was
called
the
Pyx,
and
so
each
periodic
test
was
termed

the Trial of the Pyx. 

† “De Moivre (1730) knew that root n described the spread for the binomial, but did not 
comment more generally than that. Certainly by Laplace (1810) the more general version 
could be said to be known.” (Stigler, personal communication, January 17, 2007.) 



Figure 1.1. 
Lowest kidney cancer 
death rates. The counties 
of the United States with 
the lowest 10% agestan
dardized death rates for 
cancer of kidney/urethra 
for U.S. males, 1980–1989 
(from Gelman and Nolan, 
2002, p. 15, reprinted with 
permission). 

Figure 1.2. 
Highest kidney cancer 
death rates. The counties 
of the United States with 
the highest 10% agestan
dardized death rates for 
cancer of kidney/urethra 
for U.S. males, 1980–1989 
(from Gelman and Nolan, 
2002, p. 14, reprinted with 
permission). 

While it looks very much like figure 1.1, it differs in one important 
detail—the counties shaded are those counties that are in the highest 
decile of the cancer distribution. We note that these ailing counties 
tend to be very rural, midwestern, southern, and western counties. It is 
easy to infer that this outcome might be directly due to the poverty of 
the rural lifestyle—no access to good medical care, a high-fat diet, and 
too much alcohol, too much tobacco. 

If we were to plot figure 1.1 on top of figure 1.2 we would see that 
many of the shaded counties on one map are right next to the shaded 
counties in the other. What is going on? What we are seeing is De 
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Figure 1.3. 
Ageadjusted kidney can
cer rates for all U.S. coun
ties in 1980–1989 shown 
as a function of the log of 
the county population. 
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Moivre’s equation in action. The variation of the mean is inversely pro-
portional to the square root of the sample size, and so small counties 
have much larger variation than large counties. A county with, say one 
hundred inhabitants that has no cancer deaths would be in the lowest 
category. But if it has one cancer death it would be among the highest. 
Counties like New York or Los Angeles or Miami/Dade with millions 
of inhabitants do not bounce around like that. 

If we plot the age-adjusted cancer rates against county population, 
this result becomes clearer still (figure 1.3). We see the typical triangu-
lar-shaped bivariate distribution in which when the population is small 
(left side of the graph) there is wide variation in cancer rates, from 
twenty per hundred thousand to zero. When county populations are 
large (right side of graph), there is very little variation, with all coun-
ties at about
five cases per hundred thousand of population. 

This is a compelling example of how someone who looked only at, 
say figure 1.1, and not knowing about De Moivre’s equation might 
draw incorrect inferences and give incorrect advice (e.g., if you are at 



risk of kidney cancer, you should move to the wide open spaces of rural 
America).
 This
 would
 be
 dangerous
 advice,
 and
 yet
 this
 is
 precisely

what was done in my third example. 

�.�. thE SMall SchOOlS MOvEMEnt: BIllIOnS fOr 

IncrEaSIng varIancE2 

The
 urbanization
 that
 characterized
 the
 twentieth
 century
 yielded

abandonment of the rural lifestyle and, with it, an increase in the size 
of
 schools.
The
time
of
oneroom
school
houses
ended;
they
were
re-
placed by large schools, often with more than a thousand students, 
dozens of teachers of many specialties, and facilities that would not 
have been practical without the enormous increase in scale. Yet during 
the last quarter of the twentieth century 3 there were the beginnings 
of dissatisfaction with large schools, and the suggestion that smaller 
schools
could
provide
betterquality
education.
Then
in
the
late
1990s

the Bill and Melinda Gates Foundation began supporting small schools 
on a broad-ranging, intensive, national basis. By 2001, the Foundation 
had given grants to education projects totaling approximately $1.7 bil-
lion.
They
have
since
been
joined
in
support
for
smaller
schools
by
the

Annenberg Foundation, the Carnegie Corporation, the Center for 
Collaborative Education, the Center for School Change, Harvard’s 
Change Leadership Group, Open Society Institute, Pew Charitable 
Trusts, and the U.S. Department of Education’s Smaller Learning 
Communities
 Program.
 The
 availability
 of
 such
 large
 amounts
 of

money to implement a smaller schools policy yielded a concomitant in-
crease in the pressure to do so, with programs to splinter large schools 
into smaller ones being proposed and implemented broadly (e.g., New 
York City, Los Angeles, Chicago, and Seattle). 

What
is
the
evidence
in
support
of
such
a
change?
There
are
many

claims made about the advantages of smaller schools, but we will focus 
here on just one—that when schools are smaller, students’ achieve-
ment
 improves.
 That
 is,
 the
 expected
 achievement
 in
 schools,
 given

that they are small [ E(achievement|small)] is greater than what is ex-
pected if they are big [ E(achievement|big)]. Using this convenient 
mathematical notation, 

E(achievement|small) .E(achievement|big), (1.3) 
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all else being equal. But the supporting evidence for this is that, when 
one looks at high-performing schools, one is apt to see an unrepresen-
tatively large proportion of smaller schools. Or, stated mathematically, 
that 

P(small|high achievement) .P(large|high achievement). (1.4) 

Note that expression (1.4) does not imply (1.3). 
In
 an
 effort
 to
 see
 the
 relationship
 between
 small
 schools
 and


achievement we looked at the performance of all of Pennsylvania’s 
public schools, as a function of their size, on the Pennsylvania testing 
program (PSSA), which is very broad and yields scores in a variety of 
subjects and over the entire range of precollegiate school years. If we 
examine the mean scores of the 1662 separate schools that provide 
fifth
grade
reading
scores,
we
find
that
of
the
topscoring
fifty
schools

(the top 3%), six of them were among the smallest 3% of the schools. 
This
is
an
overrepresentation
by
a
factor
of
 four.
If
size
of
school
was

unrelated to achievement, we would expect 3% of small schools to be 
in
this
select
group,
and
we
found
12%.
The
bivariate
distribution
of

enrollment
and
test
score
is
shown
in
figure
1.4.
The
top
fifty
schools

are marked by a square. 

We
also
 identified
 the
fifty
 lowest
 scoring
schools,
marked
by
an

“o”
 in
 figure
 1.4.
 Nine
 of
 these
 (18%)
 were
 among
 the
 fifty
 smallest

schools.
 This
 result
 is
 completely
 consonant
 with
 what
 is
 expected

from De Moivre’s equation—the smaller schools are expected to have 
higher variance and hence should be overrepresented at both ex-
tremes.
Note
that
the
regression
line
shown
on
figure
1.4
is
essentially

flat,
indicating
that,
overall,
there
is
no
apparent
relationship
between

school size and performance. But this is not always true. 

Figure
1.5
is
a
plot
of
eleventh
grade
scores.
We
find
a
similar
over
representation of small schools on both extremes, but this time the 
regression
 line
 shows
a
 significant
positive
 slope;
overall,
 students
 at

bigger schools do better. 

The
small
schools
movement
seems
to
have
arrived
at
one
of
its
rec
ommendations through the examination of only one tail of the perfor-
mance distribution. Small schools are overrepresented at both tails, 
exactly as expected, since smaller schools will show greater variation 
in performance and empirically will show up wherever we look. Our 



examination of fifth grade performance suggests that school size alone 
seems to have no bearing on student achievement. This is not true at 
the high-school level, where larger schools show better performance. 
This too is not unexpected, since very small high schools cannot pro-
vide as broad a curriculum or as many highly specialized teachers as 
large schools. This was discussed anecdotally in a July 20, 2005, article 
in the Seattle Weekly by Bob Geballe.
The article describes the conver-
sion of Mountlake Terrace High School in Seattle from a large subur-
ban school with an enrollment of 1,800 students into five smaller 
schools. The conversion was greased with a Gates Foundation grant of 
almost a million dollars. Although class sizes remained the same, each 
of the five schools had fewer teachers. Students complained, “There’s 
just one English teacher and one math teacher . . . teachers ended up 
teaching things they don’t really know.” Perhaps this helps to explain 
the regression line in
figure 1.5. 

On October 26, 2005, Lynn Thompson, in an article in the Seattle 
Times reported that “The Gates Foundation announced last week it 
is moving away from its emphasis on converting large high schools 
into smaller ones and instead giving grants to specially selected school 

Figure 1.4. 
Average score of fifth 
grade classes in mathe
matics shown as a func
tion of school size. 
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Figure 1.5. 
Eleventh grade student 
scores on a statewide 
math test shown as a 
function of school size. 
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districts with a track record of academic improvement and effective 
leadership. Education leaders at the Foundation said they concluded 
that improving classroom instruction and mobilizing the resources of 
an entire district were more important first steps to improving high 
schools than breaking down the size.” This point of view was amplified 
in a study that carefully analyzed matched students in schools of vary-
ing sizes. The lead author concluded, “I’m afraid we have done a terri-
ble disservice to kids.” 4 

Expending more than a billion dollars on a theory based on igno-
rance of De Moivre’s equation suggests just how dangerous that igno-
rance can be. 

�.�. thE SafESt cItIES 

The New York Times recently reported5 the ten safest U.S. cities and the 
ten most unsafe based on an automobile insurance company statistic, 



the
“average
number
of
years
between
accidents.”
The
cities
were
drawn

from the two hundred largest cities in the U.S. It should come as no 
surprise that a list of the ten safest cities, the ten most dangerous cit-
ies, and the ten largest cities have no overlap (see table 1.1). 

Exactly which cities are the safest, and which the most dangerous, 
must
surely
depend
on
many
things.
But
it
would
be
difficult
(because

of De Moivre’s equation) for the largest cities to be at the extremes. 
Thus
we
should
not
be
surprised
that
the
ends
of
the
safety
distribu
tion are anchored by smaller cities. 

�.�. SEx dIffErEncES 

For many years it has been well established that there is an overabun-
dance
 of
 boys
 at
 the
 high
 end
 of
 test
 score
 distributions.
 This
 has

meant that about twice as many boys as girls received Merit Scholar-
ships and other highly competitive awards. Historically, some observ-
ers
 have
 used
 such
 results
 to
 make
 inferences
 about
 differences
 in

intelligence between the sexes. Over the last few decades, however, 
most enlightened investigators have seen that it is not necessarily a dif-
ference
 in
 level
 but
 a
 difference
 in
 variance
 that
 separates
 the
 sexes.

The
public
observation
of
 this
 fact
has
not
been
greeted
gently;
wit
ness the recent outcry when Harvard’s (now ex-)president Lawrence 
Summers pointed this out: 

It
 does
 appear
 that
 on
 many,
 many,
 different
 human
 attri
butes—height, weight, propensity for criminality, overall IQ,  
mathematical
ability,
scientific
ability—there
is
relatively
clear


evidence
that
whatever
the
difference
in
means—which
can
be


debated—there
is
a
difference
in
standard
deviation/variability


of a male and female population. And it is true with respect to  
attributes that are and are not plausibly, culturally determined.*  
(Summers [2005])  

The
boys’
score
distributions
are
almost
always
characterized
by
greater

variance
 than
 the
 girls’.
 Thus,
 while
 there
 are
 more
 boys
 at
 the
 high

end, there are also more at the low end. 

* Informal remarks made by Lawrence Summers in July 2005 at the National Bureau of 
Economic Research Conference on Diversifying the Science and Engineering Workforce. 
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Table 1.1 
Information on Automobile Accident Rates in 20 Cities 

Number of 
years 

Population between 
City State rank Population accidents 

Ten safest 
Sioux Falls South Dakota 170 133,834 14.3 
Fort Collins Colorado 182 125,740 13.2 
Cedar Rapids Iowa 190 122,542 13.2 
Huntsville Alabama 129 164,237 12.8 
Chattanooga Tennessee 138 154,887 12.7 
Knoxville Tennessee 124 173,278 12.6 
Des Moines Iowa 103 196,093 12.6 
Milwaukee Wisconsin 19 586,941 12.5 
Colorado Springs Colorado 48 370,448 12.3 
Warren Michigan 169 136,016 12.3 

Ten least safe 
Newark New Jersey 64 277,911 5.0 
Washington DC 25 563,384 5.1 
Elizabeth New Jersey 189 123,215 5.4 
Alexandria Virginia 174 128,923 5.7 
Arlington Virginia 114 187,873 6.0 
Glendale California 92 200,499 6.1 
Jersey City New Jersey 74 239,097 6.2 
Paterson New Jersey 148 150,782 6.5 
San Francisco California 14 751,682 6.5 
Baltimore Maryland 18 628,670 6.5 

Ten biggest 
New York New York 1 8,085,742 8.4 
Los Angeles California 2 3,819,951 7.0 
Chicago Illinois 3 2,869,121 7.5 
Houston Texas 4 2,009,690 8.0 
Philadelphia Pennsylvania 5 1,479,339 6.6 
Phoenix Arizona 6 1,388,416 9.7 
San Diego California 7 1,266,753 8.9 
San Antonio Texas 8 1,214,725 8.0 
Dallas Texas 9 1,208,318 7.3 
Detroit Michigan 10 911,402 10.4 

Source: Data from the NY Times and www.allstate.com/media/newsheadlines. 
From Wainer, 2007d. 
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Table 1.2 
Eighth Grade NAEP National Results: Summary of Some Outcomes, 

by Sex, from National Assessment of Educational Progress 

Subject Year 

Mean scale scores 

Male Female 

Standard deviations 

Male Female 
Male/female 

ratio 

Math 1990 
1992 
1996 
2000 
2003 
2005 

263 
268 
271 
274 
278 
280 

262 
269 
269 
272 
277 
278 

37 
37 
38 
39 
37 
37 

35 
36 
37 
37 
35 
35 

1.06 
1.03 
1.03 
1.05 
1.06 
1.06 

Science 1996 
2000 
2005 

150 
153 
150 

148 
146 
147 

36 
37 
36 

33 
35 
34 

1.09 
1.06 
1.06 

Reading 1992 
1994 
1998 
2002 
2003 
2005 

254 
252 
256 
260 
258 
257 

267 
267 
270 
269 
269 
267 

36 
37 
36 
34 
36 
35 

35 
35 
33 
33 
34 
34 

1.03 
1.06 
1.09 
1.03 
1.06 
1.03 

Geography 1994 
2001 

262 
264 

258 
260 

35 
34 

34 
32 

1.03 
1.06 

US History 1994 
2001 

259 
264 

259 
261 

33 
33 

31 
31 

1.06 
1.06 

Source: http://nces.ed.gov/nationsreportcard/nde/ 

An example, chosen from the National Assessment of Educational 
Progress (NAEP), is shown in table 1.2. NAEP is a true survey and so 
problems of self-selection (rife in college entrance exams, licensing 
exams,
etc.)
are
substantially
reduced.
The
data
summarized
in
table
1.2

were
accumulated
over
fifteen
years
and
five
subjects.
In
all
instances

the standard deviation of males is from 3% to 9% greater than that of 
females.
This
 is
 true
when
males
 score
higher
on
average
 (math,
 sci
ence, geography) or lower (reading). 

Both
inferences,
the
incorrect
one
about
differences
in
level
and
the

correct
 one
 about
 differences
 in
 variability,
 cry
 out
 for
 explanation.
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The
old
cry
would
have
been
“why
do
boys
score
higher
 than
girls?”;

the newer one, “why do boys show more variability?” If one did not 
know
about
De
Moivre’s
result
and
tried
to
answer
only
the
first
ques
tion,
it
would
be
a
wild
goose
chase,
trying
to
find
an
explanation
for
a

phenomenon that did not exist. But, if we focus on why variability is 
greater
 in
 males,
 we
 may
 find
 pay
 dirt.
 Obviously
 the
 answer
 to
 the

causal question “why?” will have many parts. Surely socialization and 
differential
expectations
must
be
major
components—especially
in
the

past,
before
the
realization
grew
that
a
society
cannot
compete
effec
tively in a global economy with only half its workforce fully mobilized. 
But there is another component that is key—and especially related to 
the topic of this chapter, De Moivre’s equation. 

In
discussing
Lawrence
Summers’
remarks
about
sex
differences
in

scientific
ability,
Christiane
NüssleinVolhard,
the
1995
Nobel
Laure
ate in Physiology/Medicine,* said 

He missed the point. In mathematics and science, there is no 
difference
in
the
intelligence
of
men
and
women.
The
difference

in genes between men and women is simply the Y chromosome, 
which has nothing to do with intelligence. (Dreifus [July 4, 
2006]) 

But perhaps it is Professor Nüsslein-Volhard who missed the point 
here.
The
Y chromosome
is
not
the
only
difference
between
the
sexes.

Summers’ point was that, when we look at either extreme of an ability 
distribution, we will see more of the group that has greater variation. 
Any mental trait that is conveyed on the X chromosome will have 
larger variability among males than females, for females have two X 
chromosomes
versus
only
one
for
males.
Thus,
from
De
Moivre’s
equa
tion, we would expect, ceteris paribus , about 40% more variability† 
among
males
than
females.
The
fact
that
we
see
less
than
10%
greater

variation in NAEP demands the existence of a deeper explanation. 
First, De Moivre’s equation requires independence of the two X’s, and 

* Dr. Nüsslein-Volhard shared the prize with Eric F. Wieschaus for their work that 
showed how the genes in a fertilized egg direct the formation of an embryo. 

† Actually the square root of two (1.414. . .) is more, hence my approximation of 40% is a 
tad low; it would be more accurate to have said 41.4%, but “40%” makes the point. 



with assortative mating this is not going to be true. Additionally, both 
X chromosomes are not expressed in every cell. Moreover, there must 
be major causes of high-level performance that are not carried on the 
X chromosome, and indeed are not genetic. But it suggests that for 
some skills between 10% and 25% of the increased variability is likely 
to have had its genesis on the X chromosome.
This
observation
would

be invisible to those, even those with Nobel prizes for work in genetics, 
who are in ignorance of De Moivre’s equation. 

It is well established that there is evolutionary pressure toward 
greater variation within species—within the constraints of genetic 
stability.
This
is
evidenced
by
the
dominance
of
sexual
over
asexual
re
production among mammals. But this leaves us with a puzzle. Why 
was our genetic structure built to yield greater variation among males 
than females? And not just among humans, but virtually all mammals. 
The
pattern
of
mating
suggests
an
answer.
In
most
mammalian
spe
cies that reproduce sexually, essentially all adult females reproduce, 
whereas only a small proportion of males do so (modern humans 
excepted).
Think
of
 the
alphamale
lion
surrounded
by
a
pride
of
 fe
males, with lesser males wandering aimlessly and alone in the forest 
roaring
in
frustration.
One
way
to
increase
the
likelihood
of
offspring

being
selected
to
reproduce
is
to
have
large
variance
among
them.
Thus

evolutionary pressure would reward larger variation for males relative 
to females. 

This
view
gained
further
support
in
studies
by
Arthur
Arnold
and

Eric Vilain of UCLA that were reported by Nicholas Wade of the 
New York Times on April 10, 2007. He wrote, 

It so happens that an unusually large number of brain-related  
genes are situated on the X chromosome.
The
sudden
emergence


of the X and Y chromosomes in brain function has caught the  
attention of evolutionary biologists. Since men have only one X  
chromosome, natural selection can speedily promote any advan-
tageous mutation that arises in one of the X’s genes. So if those  
picky women should be looking for smartness in prospective  
male partners, that might explain why so many brain-related  
genes ended up on the X.  
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He goes on to conclude, 

Greater male variance means that although average IQ is iden-
tical in men and women, there are fewer average men and more 
at both extremes. Women’s care in selecting mates, combined 
with the fast selection made possible by men’s lack of backup 
copies of X-related genes, may have driven the divergence be-
tween male and female brains. 

�.�. cOncluSIOn 

It
is
no
revelation
that
humans
don’t
fully
comprehend
the
effect
that

variation,
 and
 especially
 differential
 variation,
 has
 on
 what
 we
 ob
serve. Daniel Kahneman’s 2002 Nobel Prize was for his studies on 
intuitive judgment (which occupies a middle ground “between the au-
tomatic operations of perception and the deliberate operations of rea-
soning” 6. Kahneman showed that humans don’t intuitively “know” 
that smaller hospitals will have greater variability in the proportion of 
male to female births. But such inability is not limited to humans 
making judgments in psychology experiments. Small hospitals are 
routinely singled out for special accolades because of their exemplary 
performance, only to slip toward average in subsequent years. Expla-
nations typically abound that discuss how their notoriety has over-
loaded their capacity. Similarly, small mutual funds are recommended, 
post hoc, by Wall Street analysts, only to have their subsequent perfor-
mance
disappoint
investors.
The
list
goes
on
and
on,
adding
evidence

and support to my nomination of De Moivre’s equation as the most 
dangerous of them all. 

This
chapter
has
been
aimed
at
reducing
the
peril
that
accompanies

ignorance of De Moivre’s equation and also at showing why an under-
standing of variability is critical if we are to avoid serious errors. 




