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Decision Theory and Human Behavior 

People are not logical. They are psychological. 

Anonymous 

People often make mistakes in their maths. 
This does not mean that we should abandon 
arithmetic. 

Jack Hirshleifer 

Decision theory is the analysis of the behavior of an individual facing 

nonstrategic uncertainty—that is, uncertainty that is due to what we term 

“Nature” (a stochastic natural event such as a coin flip, seasonal crop loss, 
personal illness, and the like) or, if other individuals are involved, their 

behavior is treated as a statistical distribution known to the decision maker. 

Decision theory depends on probability theory, which was developed in 

the seventeenth and eighteenth centuries by such notables as Blaise Pascal, 

Daniel Bernoulli, and Thomas Bayes. 

A rational actor is an individual with consistent preferences (�1.1). A 
rational actor need not be selfish. Indeed, if rationality implied selfishness, 

the only rational individuals would be sociopaths. Beliefs, called subjective 

priors in decision theory, logically stand between choices and payoffs. Be­

liefs are primitive data for the rational actor model. In fact, beliefs are the 

product of social processes and are shared among individuals. To stress the 

importance of beliefs in modeling choice, I often describe the rational actor 

model as the beliefs, preferences and constraints model, or the BPC model. 
The BPC terminology has the added attraction of avoiding the confusing 

and value-laden term “rational.” 

The BPC model requires only preference consistency, which can be de­

fended on basic evolutionary grounds. While there are eminent critics of 

preference consistency, their claims are valid in only a few narrow areas. 

Because preference consistency does not presuppose unlimited information­
processing capacities and perfect knowledge, even bounded rationality (Si­
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mon 1982) is consistent with the BPC model.1 Because one cannot do be­

havioral game theory, by which I mean the application of game theory to the 
experimental study of human behavior, without assuming preference con­

sistency, we must accept this axiom to avoid the analytical weaknesses of 

the behavioral disciplines that reject the BPC model, including psychology, 

anthropology, and sociology (see chapter 12). 

Behavioral decision theorists have argued that there are important areas in 

which individuals appear to have inconsistent preferences. Except when in­
dividuals do not know their own preferences, this is a conceptual error based 

on a misspecification of the decision maker’s preference function. We show 

in this chapter that, assuming individuals know their preferences, adding in­

formation concerning the current state of the individual to the choice space 

eliminates preference inconsistency. Moreover, this addition is completely 

reasonable because preference functions do not make any sense unless we 

include information about the decision maker’s current state. When we are 
hungry, scared, sleepy, or sexually deprived, our preference ordering ad­

justs accordingly. The idea that we should have a utility function that does 

not depend on our current wealth, the current time, or our current strate­

gic circumstances is also not plausible. Traditional decision theory ignores 

the individual’s current state, but this is just an oversight that behavioral 

decision theory has brought to our attention. 
Compelling experiments in behavioral decision theory show that humans 

violate the principle of expected utility in systematic ways (�1.7). Again, 

is must be stressed that this does not imply that humans violate preference 

consistency over the appropriate choice space but rather that they have in­

correct beliefs deriving from what might be termed “folk probability theory” 

and make systematic performance errors in important cases (Levy 2008). 
To understand why this is so, we begin by noting that, with the exception 

of hyperbolic discounting when time is involved (�1.4), there are no re­

ported failures of the expected utility theorem in nonhumans, and there are 

some extremely beautiful examples of its satisfaction (Real 1991). More­

over, territoriality in many species is an indication of loss aversion (Chap­

ter 11). The difference between humans and other animals is that the latter 

are tested in real life, or in elaborate simulations of real life, as in Leslie 
Real’s work with bumblebees (1991), where subject bumblebees are re­

1Indeed, it can be shown (Zambrano 2005) that every boundedly rational individual is 

a fully rational individual subject to an appropriate set of Bayesian priors concerning the 
state of nature. 



3 Decision Theory and Human Behavior 

leased into elaborate spatial models of flowerbeds. Humans, by contrast, 

are tested using imperfect analytical models of real-life lotteries. While it 
is important to know how humans choose in such situations, there is cer­

tainly no guarantee they will make the same choices in the real-life situa­

tion and in the situation analytically generated to represent it. Evolutionary 

game theory is based on the observation that individuals are more likely to 

adopt behaviors that appear to be successful for others. A heuristic that says 

“adopt risk profiles that appear to have been successful to others” may lead 
to preference consistency even when individuals are incapable of evaluating 

analytically presented lotteries in the laboratory. 

In addition to the explanatory success of theories based on the BPC 

model, supporting evidence from contemporary neuroscience suggests that 

expected utility maximization is not simply an “as if” story. In fact, the 

brain’s neural circuitry actually makes choices by internally representing 

the payoffs of various alternatives as neural firing rates and choosing a 
maximal such rate (Shizgal 1999; Glimcher 2003; Glimcher and Rusti­

chini 2004; Glimcher, Dorris, and Bayer 2005). Neuroscientists increas­

ingly find that an aggregate decision making process in the brain synthe­

sizes all available information into a single unitary value (Parker and New­

some 1998; Schall and Thompson 1999). Indeed, when animals are tested 

in a repeated trial setting with variable rewards, dopamine neurons appear 
to encode the difference between the reward that the animal expected to 

receive and the reward that the animal actually received on a particular trial 

(Schultz, Dayan, and Montague 1997; Sutton and Barto 2000), an evalua­

tion mechanism that enhances the environmental sensitivity of the animal’s 

decision making system. This error prediction mechanism has the drawback 

of seeking only local optima (Sugrue, Corrado, and Newsome 2005). Mon­
tague and Berns (2002) address this problem, showing that the orbitofrontal 

cortex and striatum contain a mechanism for more global predictions that in­

clude risk assessment and discounting of future rewards. Their data suggest 

a decision-making model that is analogous to the famous Black-Scholes 

options-pricing equation (Black and Scholes 1973). 

The existence of an integrated decision-making apparatus in the human 

brain itself is predicted by evolutionary theory. The fitness of an organism 
depends on how effectively it make choices in an uncertain and varying en­

vironment. Effective choice must be a function of the organism’s state of 

knowledge, which consists of the information supplied by the sensory inputs 

that monitor the organism’s internal states and its external environment. In 
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relatively simple organisms, the choice environment is primitive and is dis­

tributed in a decentralized manner over sensory inputs. But in three separate 
groups of animals, craniates (vertebrates and related creatures), arthropods 

(including insects, spiders, and crustaceans), and cephalopods (squid, oc­

topuses, and other mollusks), a central nervous system with a brain (a cen­

trally located decision-making and control apparatus) evolved. The phylo­

genetic tree of vertebrates exhibits increasing complexity through time and 

increasing metabolic and morphological costs of maintaining brain activity. 
Thus, the brain evolved because larger and more complex brains, despite 

their costs, enhanced the fitness of their carriers. Brains therefore are in­

eluctably structured to make consistent choices in the face of the various 

constellations of sensory inputs their bearers commonly experience. 

Before the contributions of Bernoulli, Savage, von Neumann, and other 

experts, no creature on Earth knew how to value a lottery. The fact that 

people do not know how to evaluate abstract lotteries does not mean that 
they lack consistent preferences over the lotteries that they face in their daily 

lives. 

Despite these provisos, experimental evidence on choice under uncer­

tainty is still of great importance because in the modern world we are in­

creasingly called upon to make such “unnatural” choices based on scientific 

evidence concerning payoffs and their probabilities. 

1.1 Beliefs, Preferences, and Constraints 

In this section we develop a set of behavioral properties, among which 

consistency is the most prominent, that together ensure that we can model 
agents as maximizers of preferences. 

A binary relation ˇA on a set A is a subset of A � A. We usually write 

the proposition .x; y/ 2 ˇA as x ̌ A y. For instance, the arithmetical 

operator “less than” (<) is a binary relation, where .x; y/ 2 < is normally 

written x < y.2 A preference ordering �A on A is a binary relation with 

the following three properties, which must hold for all x; y; z 2 A and any 
set B : 

1. Complete: x �A y or y �A x; 

2. Transitive: x �A y and y �A z imply x �A z; 

2See chapter 14 for the basic mathematical notation used in this book. Additional 

binary relations over the set R of real numbers include >, <, �, D, �, and ¤, but C is not 
a binary relation because x C y is not a proposition. 
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3.	 Independent of irrelevant alternatives: For x; y 2 B , x �B y if and 

only if x �A y. 

Because of the third property, we need not specify the choice set and can 

simply write x � y. We also make the behavioral assumption that given 

any choice set A, the individual chooses an element x 2 A such that for all 
y 2 A, x � y. When x � y, we say “x is weakly preferred to y.” 

The first condition is completeness, which implies that any member of A 

is weakly preferred to itself (for any x in A, x � x). In general, we say 

a binary relation ˇ is reflexive if, for all x, x ̌  x. Thus, completeness 

implies reflexivity. We refer to � as “weak preference” in contrast with 

“strong preference” �. We define x � y to mean “it is false that y � x.” 
We say x and y are equivalent if x � y and y � x, and we write x ' y. 

As an exercise, you may use elementary logic to prove that if � satisfies the 

completeness condition, then � satisfies the following exclusion condition: 

if x � y, then it is false that y � x. 

The second condition is transitivity, which says that x � y and y � z 
imply x � z. It is hard to see how this condition could fail for anything 
we might like to call a preference ordering.3 As a exercise, you may show 

that x � y and y � z imply x � z, and x � y and y � z imply x � z. 

Similarly, you may use elementary logic to prove that if � satisfies the 

completeness condition, then ' is transitive (i.e., satisfies the transitivity 

condition). 

The third condition, independence of irrelevant alternatives (IIA) means 

that the relative attractiveness of two choices does not depend upon the 
other choices available to the individual. For instance, suppose an individual 

generally prefers meat to fish when eating out, but if the restaurant serves 

lobster, the individual believes the restaurant serves superior fish, and hence 

prefers fish to meat, even though he never chooses lobster; thus, IIA fails. 

When IIA fails, it can be restored by suitably refining the choice set. For 

instance, we can specify two qualities of fish instead of one, in the preceding 
example. More generally, if the desirability of an outcome x depends on 

the set A from which it is chosen, we can form a new choice space �� , 

elements of which are ordered pairs .A; x/, where x 2A� �, and restrict 

choice sets in �� to be subsets of �� all of whose first elements are equal. 

In this new choice space, IIA is trivially satisfied. 

3The only plausible model of intransitivity with some empirical support is regret theory 

(Loomes 1988; Sugden 1993). Their analysis applies, however, only to a narrow range of 
choice situations. 
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When the preference relation � is complete, transitive, and independent 

of irrelevant alternatives, we term it consistent. If � is a consistent prefer­
ence relation, then there will always exist a preference function such that 

the individual behaves as if maximizing this preference function over the 

set A from which he or she is constrained to choose. Formally, we say 

that a preference function u WA! R represents a binary relation � if, for 

all x; y 2 A, u.x/ � u.y/ if and only if x � y. We have the following 

theorem. 

THEOREM 1.1 A binary relation � on the finite set A of payoffs can be 

represented by a preference function uWA!R if and only if � is consistent. 

It is clear that u.�/ is not unique, and indeed, we have the following the­

orem. 

THEOREM 1.2 If u.�/ represents the preference relation � and f .�/ is a 

strictly increasing function, then v.�/ D f .u.�// also represents �. Con­

versely, if both u.�/ and v.�/ represent �, then there is an increasing func­

tion f .�/ such that v.�/ D f .u.�//. 

The first half of the theorem is true because if f is strictly increasing, then 

u.x/ > u.y/ implies v.x/ D f .u.x// > f .u.y//D v.y/, and conversely. 
For the second half, suppose u.�/ and v.�/ both represent �, and for any 

y 2 R such that v.x/ D y for some x 2 X , let f .y/ D u.v�1.y//, which 

is possible because v is an increasing function. Then f .�/ is increasing 

(because it is the composition of two increasing functions) and f .v.x// D 
u.v�1.v.x/// D u.x/, which proves the theorem. 

1.2 The Meaning of Rational Action 

The origins of the BPC model lie in the eighteenth century research of 

Jeremy Bentham and Cesare Beccaria. In his Foundations of Economic 

Analysis (1947), economist Paul Samuelson removed the hedonistic as­
sumptions of utility maximization by arguing, as we have in the previous 

section, that utility maximization presupposes nothing more than transitiv­

ity and some harmless technical conditions akin to those specified above. 

Rational does not imply self-interested. There is nothing irrational about 

caring for others, believing in fairness, or sacrificing for a social ideal. Nor 

do such preferences contradict decision theory. For instance, suppose a man 
with $100 is considering how much to consume himself and how much to 



Decision Theory and Human Behavior 7 

give to charity. Suppose he faces a tax or subsidy such that for each $1 

he contributes to charity, he is obliged to pay p dollars. Thus, p > 1 

represents a tax, while 0 < p < 1 represents a subsidy. We can then treat 

p as the price of a unit contribution to charity and model the individual 

as maximizing his utility for personal consumption x and contributions to 

charity y, say u.x; y/ subject to the budget constraint xCpyD100. Clearly, 

it is perfectly rational for him to choose y>0. Indeed, Andreoni and Miller 

(2002) have shown that in making choices of this type, consumers behave 
in the same way as they do when choosing among personal consumption 

goods; i.e., they satisfy the generalized axiom of revealed preference. 

Decision theory does not presuppose that the choices people make are 

welfare-improving. In fact, people are often slaves to such passions as 

smoking cigarettes, eating junk food, and engaging in unsafe sex. These 

behaviors in no way violate preference consistency. 

If humans fail to behave as prescribed by decision theory, we need not 
conclude that they are irrational. In fact, they may simply be ignorant or 

misinformed. However, if human subjects consistently make intransitive 

choices over lotteries (e.g., �1.7), then either they do not satisfy the axioms 

of expected utility theory or they do not know how to evaluate lotteries. The 

latter is often called performance error. Performance error can be reduced 

or eliminated by formal instruction, so that the experts that society relies 
upon to make efficient decisions may behave quite rationally even in cases 

where the average individual violates preference consistency. 

1.3 Why Are Preferences Consistent? 

Preference consistency flows from evolutionary biology (Robson 1995). 

Decision theory often applies extremely well to nonhuman species, includ­

ing insects and plants (Real 1991; Alcock 1993; Kagel, Battalio, and Green 

1995). Biologists define the fitness of an organism as its expected number 
of offspring. Assume, for simplicity, asexual reproduction. A maximally 

fit individual will then produce the maximal expected number of offspring, 

each of which will inherit the genes for maximal fitness. Thus, fitness max­

imization is a precondition for evolutionary survival. If organisms maxi­

mized fitness directly, the conditions of decision theory would be directly 

satisfied because we could simply represent the organism’s utility function 
as its fitness. 
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However, organisms do not directly maximize fitness. For instance, moths 

fly into flames and humans voluntarily limit family size. Rather, organisms 
have preference orderings that are themselves subject to selection according 

to their ability to promote fitness (Darwin 1872). We can expect preferences 

to satisfy the completeness condition because an organism must be able to 

make a consistent choice in any situation it habitually faces or it will be 

outcompeted by another whose preference ordering can make such a choice. 

Of course, unless the current environment of choice is the same as 
the historical environment under which the individual’s preference sys­

tem evolved, we would not expect an individual’s choices to be fitness-

maximizing, or even necessarily welfare-improving. 

This biological explanation also suggests how preference consistency 

might fail in an imperfectly integrated organism. Suppose the organism has 

three decision centers in its brain, and for any pair of choices, majority rule 

determines which the organism prefers. Suppose the available choices are 
A, B , and C and the three decision centers have preferences A � B � C , 

B � C � A, and C � A � B , respectively. Then when offered A or B , the 

individual chooses A, when offered B or C , the individual chooses B , and 

when offered A and C , the individual chooses C . Thus A � B � C � A, 

and we have intransitivity. Of course, if an objective fitness is associated 

with each of these choices, Darwinian selection will favor a mutant who 
suppresses two of the three decision centers or, better yet, integrates them. 

1.4 Time Inconsistency 

Several human behavior patterns appear to exhibit weakness of will, in the 

sense that if there is a long time period between choosing and experienc­

ing the costs and benefits of the choice, individuals can choose wisely, but 

when costs or benefits are immediate, people make poor choices, longrun 

payoffs being sacrificed in favor of immediate payoffs. For instance, smok­
ers may know that their habit will harm them in the long run, but cannot 

bear to sacrifice the present urge to indulge in favor of the far-off reward 

of a healthy future. Similarly, a couple in the midst of sexual passion may 

appreciate that they may well regret their inadequate safety precautions at 

some point in the future, but they cannot control their present urges. We 

call this behavior time-inconsistent.4 

4For an excellent survey of empirical results in this area, see Frederick, Loewenstein, 
and O’Donoghue (2002). 
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Are people time-consistent? Take, for instance, impulsive behavior. Ec­

onomists are wont to argue that what appears to be impulsive—cigarette 
smoking, drug use, unsafe sex, overeating, dropping out of school, punching 

out your boss, and the like—may in fact be welfare-maximizing for people 

who have high time discount rates or who prefer acts that happen to have 

high future costs. Controlled experiments in the laboratory cast doubt on 

this explanation, indicating that people exhibit a systematic tendency to 

discount the near future at a higher rate than the distant future (Chung and 
Herrnstein 1967; Loewenstein and Prelec 1992; Herrnstein and Prelec 1992; 

Fehr and Zych 1994; Kirby and Herrnstein 1995; McClure et al. 2004). 

For instance, consider the following experiment conducted by Ainslie and 

Haslam (1992). Subjects were offered a choice between $10 on the day of 

the experiment or $11 a week later. Many chose to take the $10 without 

delay. However, when the same subjects were offered $10 to be delivered 

a year from the day of the experiment or $11 to be delivered a year and a 
week from the day of the experiment, many of those who could not wait 

a week right now for an extra 10%, preferred to wait a week for an extra 

10%, provided the agreed-upon wait was one year in the future. 

It is instructive to see exactly where the consistency conditions are vio­

lated in this example. Let x mean “$10 at some time t” and let y mean “$11 

at time t C 7,” where time t is measured in days. Then the present-oriented 
subjects display x � y when t D 0, and y � x when t D 365. Thus the ex­

clusion condition for � is violated, and because the completeness condition 

for � implies the exclusion condition for �, the completeness condition 

must be violated as well. 

However, time inconsistency disappears if we model the individuals as 

choosing over a slightly more complicated choice space in which the dis­
tance between the time of choice and the time of delivery of the object cho­

sen is explicitly included in the object of choice. For instance, we may write 

x0 to mean “$10 delivered immediately” and x365 to mean “$10 delivered a 

year from today,” and similarly for y7 and y372. Then the observation that 

x0 � y7 and y372 � x365 is no contradiction. 

Of course, if you are not time-consistent and if you know this, you should 

not expect that your will carry out your plans for the future when the time 
comes. Thus, you may be willing to precommit yourself to making these 

future choices, even at a cost. For instance, if you are saving in year 1 for a 

purchase in year 3, but you know you will be tempted to spend the money 
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in year 2, you can put it in a bank account that cannot be accessed until the 

year after next. My teacher Leo Hurwicz called this the “piggy bank effect.” 
The central theorem on choice over time is that time consistency results 

from assuming that utility is additive across time periods and that the in­

stantaneous utility function is the same in all time periods, with future util­

ities discounted to the present at a fixed rate (Strotz 1955). This is called 

exponential discounting and is widely assumed in economic models. For in­

stance, suppose an individual can choose between two consumption streams 
x D x0; x1; : : : or y D y0; y1; : : :. According to exponential discounting, 

he has a utility function u.x/ and a constant ı 2 .0; 1/ such that the total 

utility of stream x is given by5 

1 
X 

U.x0; x1; : : :/ D ık u.xk/: (1.1) 

kD0 

We call ı the individual’s discount factor. Often we write ı D e �r where 
we interpret r > 0 as the individual’s one-period continuously compounded 

interest rate, in which case (1.1) becomes 

1 
X 

U.x0; x1; : : :/ D e �rk u.xk/: (1.2) 

kD0 

This form clarifies why we call this “exponential” discounting. The indi­

vidual strictly prefers consumption stream x over stream y if and only if 

U.x/ > U.y/. In the simple compounding case, where the interest accrues 
at the end of the period, we write ı D 1=.1C r/, and (1.2) becomes 

1 
X u.xk/

U.x0; x1; : : :/ D : (1.3) 
.1C r/k 

kD0 

Despite the elegance of exponential discounting, observed intertempo­

ral choice for humans appears to fit more closely the model of hyperbolic 

discounting (Ainslie and Haslam 1992; Ainslie 1975; Laibson 1997), first 

observed by Richard Herrnstein in studying animal behavior (Herrnstein, 
Laibson, and Rachlin 1997) and reconfirmed many times since (Green et 

al. 2004). For instance, continuing the previous example, let zt mean 

5Throughout this text, we write x 2 .a; b/ for a < x < b, x 2 Œa; b/ for a � x < b, 
x 2 .a; b� for a < x � b, and x 2 Œa; b� for a � x � b. 
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“amount of money delivered t days from today.” Then let the utility of zt be 

u.zt/ D z=.t C 1/. The value of x0 is thus u.x0/ D u.100/ D 10=1 D 10, 
and the value of y7 is u.y7/ D u.117/ D 11=8 D 1:375, so x0 � y7. 

But u.x365/ D 10=366 D 0:027 while u.y372/ D 11=373 D 0:029, so 

y372 � x365. 

There is also evidence that people have different rates of discount for dif­

ferent types of outcomes (Loewenstein 1987; Loewenstein and Sicherman 

1991). This would be irrational for outcomes that could be bought and sold 
in perfect markets, because all such outcomes should be discounted at the 

market interest rate in equilibrium. But, of course, there are many things 

that people care about that cannot be bought and sold in perfect markets. 

Neurological research suggests that balancing current and future payoffs 

involves adjudication among structurally distinct and spatially separated 

modules that arose in different stages in the evolution of H. sapiens (Tooby 

and Cosmides 1992; Sloman 2002; McClure et al. 2004). The long-term 
decision-making capacity is localized in specific neural structures in the 

prefrontal lobes and functions improperly when these areas are damaged, 

despite the fact that subjects with such damage appear to be otherwise com­

pletely normal in brain functioning (Damasio 1994). H. sapiens may be 

structurally predisposed, in terms of brain architecture, to exhibit a system­

atic present orientation. 
In sum, time inconsistency doubtless exists and is important in model­

ing human behavior, but this does not imply that people are irrational in 

the weak sense of preference consistency. Indeed, we can model the be­

havior of time-inconsistent rational individuals by assuming they maxi­

mize their time-dependent preference functions (O’Donoghue and Rabin, 

1999a,b, 2000, 2001). For axiomatic treatment of time-dependent prefer­
ences, see Ahlbrecht and Weber (1995) and Ok and Masatlioglu (2003). In 

fact, humans are much closer to time consistency and have much longer 

time horizons than any other species, probably by several orders of mag­

nitude (Stephens, McLinn, and Stevens 2002; Hammerstein 2003). We do 

not know why biological evolution so little values time consistency and long 

time horizons even in long-lived creatures. 

1.5 Bayesian Rationality and Subjective Priors 

Consider decisions in which a stochastic event determines the payoffs to 
the players. Let X be a set of prizes. A lottery with payoffs in X is a 
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P 

function pWX!Œ0; 1� such that x2X p.x/ D 1. We interpret p.x/ as the 

probability that the payoff is x 2 X . If X D fx1; : : : ; xng for some finite 
number n, we write p.xi/ D pi . 

The expected value of a lottery is the sum of the payoffs, where each 

payoff is weighted by the probability that the payoff will occur. If the lottery 

l has payoffs x1; : : : ; xn with probabilities p1; : : : ; pn, then the expected 

value EŒl� of the lottery l is given by 

n 
X 

EŒl� D pixi : 

iD1 

The expected value is important because of the law of large numbers (Feller 

1950), which states that as the number of times a lottery is played goes to 

infinity, the average payoff converges to the expected value of the lottery 

with probability 1. 

Consider the lottery l1 in figure 1.1(a), where p is the probability of win­

ning amount a and 1�p is the probability of winning amount b. The ex­
pected value of the lottery is then EŒl1� D pa C .1 � p/b. Note that we 

model a lottery a lot like an extensive form game—except that there is only 

one player. 

Consider the lottery l2 with the three payoffs shown in figure1.1(b). Here 

p is the probability of winning amount a, q is the probability of winning 

amount b, and 1�p�q is the probability of winning amount c. The expected 
value of the lottery is EŒl2� D pa C qb C .1� p � q/c. 

A lottery with n payoffs is given in figure 1.1(c). The prizes are now 

a1; : : : ; an with probabilities p1; : : : ; pn, respectively. The expected value 
. . . of the lottery is now EŒl3� D p1a1 C p2a2 C C pnan. 

a1 

a2 

an�1 

an 

� 

p1 

p2 

pn�1 

pn 

a 

b 

c 

� 

p 

q 

1 � p � q 

a 

b 

�l1 

p 

1 � p 

l2 l3 

(a) (b) (c) 

Figure 1.1. Lotteries with two, three, and n potential outcomes. 

In this section we generalize the previous argument, developing a set of 
behavioral properties that yield both a utility function over outcomes and a 
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probability distribution over states of nature, such that the expected utility 

principle holds. Von Neumann and Morgenstern (1944), Friedman and 
Savage (1948), Savage (1954), and Anscombe and Aumann (1963) showed 

that the expected utility principle can be derived from the assumption that 

individuals have consistent preferences over an appropriate set of lotteries. 

We outline here Savage’s classic analysis of this problem. 

For the rest of this section, we assume � is a preference relation (�1.1). To 

ensure that the analysis is not trivial, we also assume that x � y is false for 
at least some x; y 2 X . Savage’s accomplishment was to show that if the 

individual has a preference relation over lotteries that has some plausible 

properties, then not only can the individual’s preferences be represented 

by a utility function, but also we can infer the probabilities the individual 

implicitly places on various events, and the expected utility principle holds 

for these probabilities. 

Let � be a finite set of states of nature. We call A � � events. Let L be 
a set of lotteries, where a lottery is a function � W�!X that associates with 

each state of nature ! 2 � a payoff �.!/ 2 X . Note that this concept of a 

lottery does not include a probability distribution over the states of nature. 

Rather, the Savage axioms allow us to associate a subjective prior over each 

state of nature !, expressing the decision maker’s personal assessment of 

the probability that ! will occur. We suppose that the individual chooses 
among lotteries without knowing the state of nature, after which Nature 

chooses the state ! 2 � that obtains, so that if the individual chose lottery 

� 2 L, his payoff is �.!/. 

Now suppose the individual has a preference relation � over L (we use 

the same symbol � for preferences over both outcomes and lotteries). We 

seek a set of plausible properties of � over lotteries that together allow us 
to deduce (a) a utility function u WX !R corresponding to the preference 

relation � over outcomes in X ; (b) a probability distribution p W�! R 

such that the expected utility principle holds with respect to the preference 

relation � over lotteries and the utility function u.�/; i.e., if we define 
X 

E� ŒuIp� D p.!/u.�.!//; (1.4) 

!2� 

then for any �; � 2 L, 

� � � ” E� ŒuIp� > E�ŒuIp�: 

Our first condition is that � � � depends only on states of nature where � 
and � have different outcomes. We state this more formally as follows. 
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A1.	 For any �; �; � 0; �0 2 L, let A D f! 2 �j�.!/ ¤ �.!/g. 

Suppose we also have A D f! 2 �j� 0.!/ ¤ �0.!/g. Suppose 
also that �.!/ D � 0.!/ and �.!/ D �0.!/ for ! 2 A. Then 

� � � , � 0 � �0 . 

This axiom says, reasonably enough, that the relative desirability of two 

lotteries does not depend on the payoffs where the two lotteries agree. The 
axiom allows us to define a conditional preference � �A �, where A � �, 

which we interpret as “� is strictly preferred to �, conditional on event A,” 

as follows. We say � �A � if, for some � 0; �0 2 L, �.!/ D � 0.!/ and 

�.!/ D �0.!/ for ! 2 A, � 0.!/ D �0.!/ for ! … A, and � 0 � �0. Because 

of A1, this is well defined (i.e., � �A � does not depend on the particular 

� 0; �0 2 L). This allows us to define �A and �A in a similar manner. We 
then define an event A � � to be null if � �A � for all �; � 2 L. 

Our second condition is then the following, where we write � D xjA to 

mean �.!/ D x for all ! 2 A (i.e., � D xjA means � is a lottery that pays 

x when A occurs). 

A2.	 If A � � is not null, then for all x; y 2 X , � D xjA �A � D 
yjA , x � y. 

This axiom says that a natural relationship between outcomes and lotteries 

holds: if � pays x given event A and � pays y given event A, and if x � y, 
then � �A �, and conversely. 

Our third condition asserts that the probability that a state of nature occurs 

is independent of the outcome one receives when the state occurs. The diffi­

culty in stating this axiom is that the individual cannot choose probabilities 

but only lotteries. But, if the individual prefers x to y, and if A;B � � are 

events, then the individual treats A as more probable than B if and only if a 

lottery that pays x when A occurs and y when A does not occur is preferred 
to a lottery that pays x when B occurs and y when B does not. However, 

this must be true for any x; y 2 X such that x � y, or the individual’s 

notion of probability is incoherent (i.e., it depends on what particular pay­

offs we are talking about—for instance, wishful thinking, where if the prize 

associated with an event increases, the individual thinks it is more likely to 

occur). More formally, we have the following, where we write � D x; yjA 
to mean “�.!/ D x for ! 2 A and �.!/ D y for ! … A.” 
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A3.	 Suppose x � y, x0 � y 0 , �; �; � 0; �0 2 L, and A;B � �.


Suppose that � D x; yjA, � D x0; y 0jA, � 0 D x; yjB , and

�0 D x0; y 0jB . Then � � � 0 , � � �0 .


The fourth condition is a weak version of first-order stochastic domi­

nance, which says that if one lottery has a higher payoff than another for 

any event, then the first is preferred to the second. 

A4.	 For any event A, if x � �.!/ for all ! 2 A, then � D xjA �A


�. Also, for any event A, if �.!/ � x for all ! 2 A, then


� �A � D xjA.


In other words, if for any event A, � D x on A pays more than the best � 

can pay on A, then � �A �, and conversely. 

Finally, we need a technical property to show that a preference relation 

can be represented by a utility function. We say nonempty sets A1; : : : ; An 

form a partition of set X if the Ai are mutually disjoint (Ai \ Aj D ; for 

i ¤ j ) and their union is X (i.e., A1 [ : : : [ An D X ). The technical 
condition says that for any �; � 2 L, and any x 2 X , there is a partition 

A1; : : : ; An of � such that, for each Ai , if we change � so that its payoff 

is x on Ai , then � is still preferred to �, and similarly, for each Ai , if we 

change � so that its payoff is x on Ai , then � is still preferred to �. This 

means that no payoff is “supergood,” so that no matter how unlikely an 

event A is, a lottery with that payoff when A occurs is always preferred to 
a lottery with a different payoff when A occurs. Similarly, no payoff can be 

“superbad.” The condition is formally as follows. 

A5.	 For all �; � 0; �; �0 2 L with � � �, and for all x 2 X , there


are disjoint subsets A1; : : : ; An of � such that [iAi D � and


for any Ai (a) if � 0.!/ D x for ! 2 Ai and � 0.!/ D �.!/ for

! … Ai , then � 0 � �, and (b) if �0.!/ D x for ! 2 Ai and


�0.!/ D �.!/ for s … Ai , then � � �0 .


We then have Savage’s theorem. 

THEOREM 1.3 Suppose A1–A5 hold. Then there is a probability function 

p on � and a utility function uWX!R such that for any �; � 2 L, � � � 
if and only if E� ŒuIp� > E�ŒuIp�. 

The proof of this theorem is somewhat tedious; it is sketched in Kreps 1988. 
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We call the probability p the individual’s Bayesian prior, or subjective 

prior and say that A1–A5 imply Bayesian rationality, because the they 
together imply Bayesian probability updating. 

1.6 The Biological Basis for Expected Utility 

Suppose an organism must choose from action set X under certain condi­

tions. There is always uncertainty as to the degree of success of the various 

options in X , which means essentially that each x 2 X determines a lottery 
that pays i offspring with probability pi .x/ for i D 0; 1; : : : ; n. Then the 

P

expected number of offspring from this lottery is .x/ D j
n 

D1 jpj .x/. 

Let L be a lottery on X that delivers xi 2 X with probability qi for 
Pk

i D 1; : : : ; k. The probability of j offspring given L is then iD1 qipj .xi /, 

so the expected number of offspring given L is 

n k k k k 
X X X X X 

j qipj .xi/ D qi jpj .xi / D qi .xi /; (1.5) 

j D1 iD1 iD1 iD1 iD1 

which is the expected value theorem with utility function .�/. See also 

Cooper (1987). 

1.7 The Allais and Ellsberg Paradoxes 

Although most decision theorists consider the expected utility principle ac­
ceptably accurate as a basis of modeling behavior, there are certainly well 

established situations in which individuals violate it. Machina (1987) re­

views this body of evidence and presents models to deal with them. We 

sketch here the most famous of these anomalies, the Allais paradox and 

the Ellsberg paradox. They are, of course, not paradoxes at all but simply 

empirical regularities that do not fit the expected utility principle. 

Maurice Allais (1953) offered the following scenario. There are two 
choice situations in a game with prizes x D $2,500,000, y D $500,000, 

and z D $0. The first is a choice between lotteries � D y and � 0 D 
0:1xC 0:89yC 0:01z. The second is a choice between � D 0:11yC 0:89z 

and �0 D 0:1x C 0:9z. Most people, when faced with these two choice 

situations, choose � � � 0 and �0 � �. Which would you choose? 

This pair of choices is not consistent with the expected utility principle. 
To see this, let us write uh D u.2500000/, um D u.500000/, and ul D 
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u.0/. Then if the expected utility principle holds, � � � 0 implies um > 

0:1uh C 0:89um C 0:01ul , so 0:11um > 0:10uh C 0:01ul , which implies 
(adding 0:89ul to both sides) 0:11um C 0:89ul > 0:10uh C 0:9ul , which 

says � � �0 . 

Why do people make this mistake? Perhaps because of regret, which does 

not mesh well with the expected utility principle (Loomes 1988; Sugden 

1993). If you choose � 0 in the first case and you end up getting nothing, 

you will feel really foolish, whereas in the second case you are probably 
going to get nothing anyway (not your fault), so increasing the chances of 

getting nothing a tiny bit (0.01) gives you a good chance (0.10) of winning 

the really big prize. Or perhaps because of loss aversion (�1.9), because 

in the first case, the anchor point (the most likely outcome) is $500,000, 

while in the second case the anchor is $0. Loss-averse individuals then 

shun � 0, which gives a positive probability of loss whereas in the second 

case, neither lottery involves a loss, from the standpoint of the most likely 
outcome. 

The Allais paradox is an excellent illustration of problems that can arise 

when a lottery is consciously chosen by an act of will and one knows that 

one has made such a choice. The regret in the first case arises because if 

one chose the risky lottery and the payoff was zero, one knows for certain 

that one made a poor choice, at least ex post. In the second case, if one 
received a zero payoff, the odds are that it had nothing to do with one’s 

choice. Hence, there is no regret in the second case. But in the real world, 

most of the lotteries we experience are chosen by default, not by acts of 

will. Thus, if the outcome of such a lottery is poor, we feel bad because of 

the poor outcome but not because we made a poor choice. 

Another classic violation of the expected utility principle was suggested 
by Daniel Ellsberg (1961). Consider two urns. Urn A has 51 red balls and 

49 white balls. Urn B also has 100 red and white balls, but the fraction of 

red balls is unknown. One ball is chosen from each urn but remains hidden 

from sight. Subjects are asked to choose in two situations. First, a subject 

can choose the ball from urn A or urn B , and if the ball is red, the subject 

wins $10. In the second situation, the subject can choose the ball from urn 

A or urn B , and if the ball is white, the subject wins $10. Many subjects 
choose the ball from urn A in both cases. This violates the expected utility 

principle no matter what probability the subject places on the probability p 

that the ball from urn B is white. For in the first situation, the payoff from 

choosing urn A is 0:51u.10/C0:49u.0/ and the payoff from choosing urn B 
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is .1�p/u.10/Cpu.0/, so strictly preferring urn Ameans p > 0:49. In the 

second situation, the payoff from choosing urn A is 0:49u.10/C 0:51u.0/ 

and the payoff from choosing urn B is pu.10/ C .1 � p/u.0/, so strictly 

preferring urn A means p < 0:49. This shows that the expected utility 

principle does not hold. 

Whereas the other proposed anomalies of classical decision theory can be 

interpreted as the failure of linearity in probabilities, regret, loss aversion, 

and epistemological ambiguities, the Ellsberg paradox strikes even more 
deeply because it implies that humans systematically violate the following 

principle of first-order stochastic dominance (FOSD). 

Let p.x/ and q.x/ be the probabilities of winning x or more in 

lotteries A and B , respectively. If p.x/ � q.x/ for all x, then 

A � B . 

The usual explanation of this behavior is that the subject knows the prob­

abilities associated with the first urn, while the probabilities associated with 
the second urn are unknown, and hence there appears to be an added degree 

of risk associated with choosing from the second urn rather than the first. If 

decision makers are risk-averse and if they perceive that the second urn is 

considerably riskier than the first, they will prefer the first urn. Of course, 

with some relatively sophisticated probability theory, we are assured that 

there is in fact no such additional risk, it is hardly a failure of rationality for 
subjects to come to the opposite conclusion. The Ellsberg paradox is thus 

a case of performance error on the part of subjects rather than a failure of 

rationality. 

1.8 Risk and the Shape of the Utility Function 

If � is defined over X , we can say nothing about the shape of a utility func­

tion u.�/ representing � because, by theorem 1.2, any increasing function 

of u.�/ also represents �. However, if � is represented by a utility function 

u.x/ satisfying the expected utility principle, then u.�/ is determined up to 

an arbitrary constant and unit of measure.6 

6Because of this theorem, the difference between two utilities means nothing. We thus 

say utilities over outcomes are ordinal, meaning we can say that one bundle is preferred to 

another, but we cannot say by how much. By contrast, the next theorem shows that utilities 

over lotteries are cardinal, in the sense that, up to an arbitrary constant and an arbitrary 
positive choice of units, utility is numerically uniquely defined. 
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Figure 1.2. A concave utility function 

THEOREM 1.4 Suppose the utility function u.�/ represents the preference 

relation � and satisfies the expected utility principle. If v.�/ is another 

utility function representing �, then there are constants a; b 2 R with a > 0 

such that v.x/ D au.x/C b for all x 2 X . 

For a proof of this theorem, see Mas-Collel, Whinston, and Green (1995, 

p. 173). 

If X D R, so the payoffs can be considered to be money, and utility 

satisfies the expected utility principle, what shape do such utility functions 
have? It would be nice if they were linear in money, in which case expected 

utility and expected value would be the same thing (why?). But generally 

utility is strictly concave, as illustrated in figure 1.2. We say a function 

u WX !R is strictly concave if, for any x; y 2 X and any p 2 .0; 1/, we 

have pu.x/ C .1 � p/u.y/ < u.px C .1 � p/y/. We say u.x/ is weakly 

concave, or simply concave, if u.x/ is either strictly concave or linear, in 
which case the above inequality is replaced by pu.x/ C .1 � p/u.y/ D 
u.px C .1 � p/y/. 

If we define the lottery � as paying x with probability p and y with 

probability 1 � p, then the condition for strict concavity says that the ex­

pected utility of the lottery is less than the utility of the expected value of 

the lottery, as depicted in figure 1.2. To see this, note that the expected 

value of the lottery is E D px C .1 � p/y, which divides the line seg­
ment between x and y into two segments, the segment xE having length 

.pxC .1�p/y/� x D .1�p/.y � x/ and the segment Ey having length 

y� .pxC .1�p/y/ D p.y�x/. Thus, E divides Œx; y� into two segments 

whose lengths have the ratio .1� p/=p. From elementary geometry, it fol­

lows that B divides segment ŒA; C � into two segments whose lengths have 

the same ratio. By the same reasoning, point H divides segments ŒF;G� 
into segments with the same ratio of lengths. This means that point H has 
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the coordinate value pu.x/C .1�p/u.y/, which is the expected utility of 

the lottery. But by definition, the utility of the expected value of the lottery 
is at D, which lies above H . This proves that the utility of the expected 

value is greater than the expected value of the lottery for a strictly concave 

utility function. This is know as Jensen’s inequality. 

What are good candidates for u.x/? It is easy to see that strict concav­

ity means u00.x/ < 0, providing u.x/ is twice differentiable (which we 

assume). But there are lots of functions with this property. According to 
the famous Weber-Fechner law of psychophysics, for a wide range of sen­

sory stimuli and over a wide range of levels of stimulation, a just noticeable 

change in a stimulus is a constant fraction of the original stimulus. If this 

holds for money, then the utility function is logarithmic. 

We say an individual is risk-averse if the individual prefers the expected 

value of a lottery to the lottery itself (provided, of course, the lottery does 

not offer a single payoff with probability 1, which we call a sure thing). We 
know, then, that an individual with utility function u.�/ is risk-averse if and 

only if u.�/ is concave.7 Similarly, we say an individual is risk-loving if he 

prefers any lottery to the expected value of the lottery, and risk-neutral if he 

is indifferent between a lottery and its expected value. Clearly, an individual 

is risk-neutral if and only if he has linear utility. 

Does there exist a measure of risk aversion that allows us to say when 
one individual is more risk-averse than another, or how an individual’s risk 

aversion changes with changing wealth? We may define individual A to be 

more risk-averse than individual B if whenever A prefers a lottery to an 

amount of money x, B will also prefer the lottery to x. We say A is strictly 

more risk-averse than B if he is more risk-averse and there is some lottery 

that B prefers to an amount of money x but such that A prefers x to the 
lottery. 

Clearly, the degree of risk aversion depends on the curvature of the utility 

function (by definition the curvature of u.x/ at x is u00.x/), but because 

u.x/ and v.x/ D au.x/C b (a > 0) describe the same behavior, although 

v.x/ has curvature a times that of u.x/, we need something more sophis­

7One may ask why people play government-sponsored lotteries or spend money at 

gambling casinos if they are generally risk-averse. The most plausible explanation is that 

people enjoy the act of gambling. The same woman who will have insurance on her 

home and car, both of which presume risk aversion, will gamble small amounts of money 

for recreation. An excessive love for gambling, of course, leads an individual either to 
personal destruction or to wealth and fame (usually the former). 
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ticated. The obvious candidate is �u.x/ D �u00.x/=u0.x/, which does not 

depend on scaling factors. This is called the Arrow-Pratt coefficient of ab­

solute risk aversion, and it is exactly the measure that we need. We have 

the following theorem. 

THEOREM 1.5 An individual with utility function u.x/ is more risk-averse 

than an individual with utility function v.x/ if and only if �u.x/ > �v.x/ 

for all x. 

For example, the logarithmic utility function u.x/ D ln.x/ has Arrow-

Pratt measure �u.x/ D 1=x, which decreases with x; i.e., as the indi­

vidual becomes wealthier, he becomes less risk-averse. Studies show that 

this property, called decreasing absolute risk aversion, holds rather widely 

(Rosenzweig and Wolpin 1993; Saha, Shumway, and Talpaz 1994; Nerlove 
and Soedjiana 1996). Another increasing concave function is u.x/ D xa 

for a 2 .0; 1/, for which �u.x/ D .1�a/=x, which also exhibits decreasing 

absolute risk aversion. Similarly, u.x/ D 1 � x�a (a > 0) is increasing 

and concave, with �u.x/ D �.a C 1/=x, which again exhibits decreasing 

absolute risk aversion. This utility has the additional attractive property that 

utility is bounded: no matter how rich you are, u.x/ < 1.8 Yet another can­
didate for a utility function is u.x/ D 1� e�ax for some a > 0. In this case 

�u.x/ D a, which we call constant absolute risk aversion. 

Another commonly used term is coefficient of relative risk aversion, 

�u.x/ D �u.x/=x. Note that for any of the utility functions u.x/ D ln.x/, 
u.x/ D xa for a 2 .0; 1/, and u.x/ D 1 � x�a (a > 0), �u.x/ is constant, 

which we call constant relative risk aversion. For u.x/ D 1�e�ax (a > 0), 

we have �u.x/ D a=x, so we have decreasing relative risk aversion. 

1.9 Prospect Theory 

A large body of experimental evidence indicates that people value payoffs 
according to whether they are gains or losses compared to their current 

status quo position. This is related to the notion that individuals adjust to 

an accustomed level of income, so that subjective well-being is associated 

more with changes in income rather than with the level of income. See, for 

instance, Helson (1964), Easterlin (1974, 1995), Lane (1991, 1993), and 

8If utility is unbounded, it is easy to show that there is a lottery that you would be 

willing to give all your wealth to play no matter how rich you are. This is not plausible 
behavior. 



22 Chapter 1 

Oswald (1997). Indeed, people appear to be about twice as averse to tak­

ing losses as to enjoying an equal level of gains (Kahneman, Knetsch, and 
Thaler 1990; Tversky and Kahneman 1981b). This means, for instance, that 

an individual may attach zero value to a lottery that offers an equal chance 

of winning $1000 and losing $500. This also implies that people are risk-

loving over losses while they remain risk-averse over gains (�1.8 explains 

the concept of risk aversion). For instance, many individuals choose a 25% 

probability of losing $2000 rather than a 50% chance of losing $1000 (both 
have the same expected value, of course, but the former is riskier). 

More formally, suppose an individual has utility function v.x�r/, where 

r is the status quo (his current position), and x represents a change from 

the status quo. Prospect theory, developed by Daniel Kahneman and Amos 

Tversky, asserts that (a) there is a “kink” in v.x � r/ such that the slope of 

v.�/ is two to three times as great just to the left of x D r as to the right; 

(b) that the curvature of v.�/ is positive for positive values and negative 
for negative values; and (c) the curvature goes to zero for large positive 

and negative values. In other words, individuals are two to three times 

more sensitive to small losses than they are to small gains, they exhibit 

declining marginal utility over gains and declining absolute marginal utility 

over losses, and they are very insensitive to change when all alternatives 

involve either large gains or large losses. This utility function is exhibited 
in figure 1.3. 

psychic 
payoff 

v.x � r/ value 

�v.0/ 

r Money x 

Figure 1.3. Loss aversion according to prospect theory 

Experimental economists have long known that the degree of risk aver­

sion exhibited in the laboratory over small gambles cannot be explained by 
standard expected utility theory, according to which risk aversion is mea­
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sured by the curvature of the utility function (�1.8). The problem is that 

for small gambles the utility function should be almost flat. This issue has 
been formalized by Rabin (2000). Consider a lottery that imposes a $100 

loss and offers a $125 gain with equal probability p D 1=2. Most subjects 

in the laboratory reject this lottery. Rabin shows that if this is true for all 

expected lifetime wealth levels less than $300,000, then in order to induce 

a subject to sustain a loss of $600 with probability 1/2, you would have to 

offer him a gain of at least $36,000,000,000 with probability 1/2. This is, 
of course, quite absurd. 

There are many regularities in empirical data on human behavior that fit 

prospect theory very well (Kahneman and Tversky 2000). For instance, 

returns on stocks in the United States have exceeded the returns on bonds 

by about 8 percentage points, averaged over the past 100 years. Assum­

ing investors are capable of correctly estimating the shape of the return 

schedule, if this were due to risk aversion alone, then the average individ­
ual would be indifferent between a sure $51,209 and a lottery that paid 

$50,000 with probability 1/2 and paid $100,000 with probability 1/2. It is, 

of course, quite implausible that more than a few individuals would be this 

risk-averse. However, a loss aversion coefficient (the ratio of the slope of 

the utility function over losses at the kink to the slope over gains) of 2.25 is 

sufficient to explain this phenomenon. This loss aversion coefficient is very 
plausible based on experiments. 

In a similar vein, people tend to sell stocks when they are doing well but 

hold onto stocks when they are doing poorly. A kindred phenomenon holds 

for housing sales: homeowners are extremely averse to selling at a loss and 

sustain operating, tax, and mortgage costs for long periods of time in the 

hope of obtaining a favorable selling price. 
One of the earliest examples of loss aversion is the ratchet effect discov­

ered by James Duesenberry, who noticed that over the business cycle, when 

times are good, people spend all their additional income, but when times 

start to go bad, people incur debt rather than curb consumption. As a result, 

there is a tendency for the fraction of income saved to decline over time. For 

instance, in one study unionized teachers consumed more when next year’s 

income was going to increase (through wage bargaining) but did not con­
sume less when next year’s income was going to decrease. We can explain 

this behavior with a simple loss aversion model. A teacher’s utility can be 

written as u.ct � rt /C st.1C �/, where ct is consumption in period t , st 

is savings in period t , � is the rate of interest on savings, and rt is the ref­
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erence point (status quo point) in period t . This assumes that the marginal 

utility of savings is constant, which is a very good approximation. Now 
suppose the reference point changes as follows: rtC1 D ˛rt C .1 � ˛/ct , 

where ˛ 2 Œ0; 1� is an adjustment parameter (˛ D 1 means no adjustment 

and ˛ D 0 means complete adjustment to last year’s consumption). Note 

that when consumption in one period rises, the reference point in the next 

period rises, and conversely. 

Now, dropping the time subscripts and assuming the individual has in­
come M , so c C s D M , the individual chooses c to maximize 

u.c � r/C .M � c/.1C �/: 

This gives the first order condition u0.c � r/ D 1 C �. Because this must 
hold for all r , we can differentiate totally with respect to r , getting 

dc 
u 00 .c � r/ 00 D u .c � r/: 

dr 

This shows that dc=dr D 1 > 0, so when the individual’s reference point 

rises, his consumption rises an equal amount. 
One general implication of prospect theory is a status quo bias, according 

to which people often prefer the status quo over any of the alternatives but 

if one of the alternatives becomes the status quo, that too is preferred to 

any of the alternatives (Kahneman, Knetsch, and Thaler 1991). Status quo 

bias makes sense if we recognize that any change can involve a loss, and 

because on the average gains do not offset losses, it is possible that any one 
of a number of alternatives might be preferred if it is the status quo. For 

instance, if employers make joining a 401k savings plan the default posi­

tion, almost all employees join. If not joining is made the default position, 

most employees do not join. Similarly, if the state automobile insurance 

commission declares one type of policy the default option and insurance 

companies ask individual policyholders how they would like to vary from 

the default, the policyholders tend not to vary, no matter what the default is 
(Camerer 2000). 

Another implication of prospect theory is the endowment effect (Kahne­

man, Knetsch, and Thaler 1991), according to which people place a higher 

value on what they possess than they place on the same things when they 

do not possess them. For instance, if you win a bottle of wine that you 

could sell for $200, you may drink it rather than sell it, but you would 
never think of buying a $200 bottle of wine. A famous experimental result 
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exhibiting the endowment effect was the “mug” experiment described by 

Kahneman, Knetsch and Thaler (1990). College student subjects given cof­
fee mugs with the school logo on them demand a price two to three times 

as high to sell the mugs as those without mugs are willing to pay to buy 

the mugs. There is evidence that people underestimate the endowment ef­

fect and hence cannot appropriately correct for it in their choice behavior 

(Loewenstein and Adler 1995). 

Yet another implication of prospect theory is the existence of a framing 

effect, whereby one form of a lottery is strictly preferred to another even 

though they have the same payoffs with the same probabilities (Tversky 

and Kahneman 1981a). For instance, people prefer a price of $10 plus a 

$1 discount to a price of $8 plus a $1 surcharge. Framing is, of course, 

closely associated with the endowment effect because framing usually in­

volves privileging the initial state from which movements are assessed. 

The framing effect can seriously distort effective decision making. In par­
ticular, when it is not clear what the appropriate reference point is, decision 

makers can exhibit serious inconsistencies in their choices. Kahneman and 

Tversky give a dramatic example from health care policy. Suppose we face 

a flu epidemic in which we expect 600 people to die if nothing is done. 

If program A is adopted, 200 people will be saved, while if program B is 

adopted, there is a 1/3 probability 600 will be saved and a 2/3 probability 
no one will be saved. In one experiment, 72% of a sample of respondents 

preferred A to B. Now suppose that if program C is adopted, 400 people 

will die, while if program D is adopted there is a 1/3 probability nobody 

will die and a 2/3 probability 600 people will die. Now, 78% of respon­

dents preferred D to C, even though A and C are equivalent in terms of the 

probability of each final state, and B and D are similarly equivalent. How­
ever, in the choice between A and B, alternatives are over gains, whereas 

in the choice between C and D, the alternatives are over losses, and people 

are loss-averse. The inconsistency stems from the fact that there is no natu­

ral reference point for the decision maker, because the gains and losses are 

experienced by others, not by the decision maker himself. 

The brilliant experiments by Kahneman, Tversky, and their coworkers 

clearly show that humans exhibit systematic biases in the way they make 
decisions. However, it should be clear that none of the above examples 

illustrates preference inconsistency once the appropriate parameter (cur­

rent time, current position, status quo point) is admitted into the preference 

function. This point is formally demonstrated in Sugden (2003). Sugden 
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considers a preference relation of the form f � gjh, which means “lot­

tery f is weakly preferred to lottery g when one’s status quo position is 
lottery h.” Sugden shows that if several conditions on this preference re­

lation, most of which are direct generalizations of the Savage conditions 

(�1.5), obtain, then there is a utility function u.x; z/ such that f � gjh if 

and only if EŒu.f; h/� � EŒu.g; h/�, where the expectation is taken over the 

probability of events derived from the preference relation. 

1.10 Heuristics and Biases in Decision Making 

Laboratory testing of the standard economic model of choice under un­

certainty was initiated by the psychologists Daniel Kahneman and Amos 
Tversky. In a famous article in the journal Science, Tversky and Kahneman 

(1974) summarized their early research as follows: 

How do people assess the probability of an uncertain event or 

the value of an uncertain quantity? . . . people rely on a lim­

ited number of heuristic principles which reduce the complex 

tasks of assessing probabilities and predicting values to simpler 

judgmental operations. In general, these heuristics are quite 

useful, but sometimes they lead to severe and systematic er­
rors. 

Subsequent research has strongly supported this assessment (Kahneman, 

Slovic, and Tversky 1982; Shafir and Tversky 1992; Shafir and Tversky 

1995). Although we still do not have adequate models of these heuristics, 

we can make certain generalizations. 

First, in judging whether an event A or object A belongs to a class or pro­

cess B , one heuristic that people use is to consider whether A is represen­

tative of B but consider no other relevant facts, such as the frequency of B . 
For instance, if informed that an individual has a good sense of humor and 

likes to entertain friends and family, and asked if the individual is a profes­

sional comic or a clerical worker, people are more likely to say the former. 

This is despite the fact that a randomly chosen person is much more likely 

to be a clerical worker than a professional comic, and many people have a 

good sense of humor, so there are many more clerical workers satisfying 
the description than professional comics. 
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A particularly pointed example of this heuristic is the famous Linda the 

Bank Teller problem (Tversky and Kahneman 1983). Subjects are given the 
following description of a hypothetical person named Linda: 

Linda is 31 years old, single, outspoken, and very bright. She 
majored in philosophy. As a student, she was deeply concerned 

with issues of discrimination and social justice and also partic­

ipated in antinuclear demonstrations. 

The subjects were then asked to rank-order eight statements about Linda 

according to their probabilities. The statements included the following two: 

Linda is a bank teller.

Linda is a bank teller and is active in the feminist movement.


More than 80% of the subjects—graduate and medical school students with 

statistical training and doctoral students in the decision science program 

at Stanford University’s business school—ranked the second statement as 

more probable than the first. This seems like a simple logical error be­

cause every bank teller feminist is also a bank teller. It appears, once again, 

that subjects measure probability by representativeness and ignore baseline 
frequencies. 

However, there is another interpretation according to which the subjects 

are correct in their judgments. Let p and q be properties that every member 

of a population either has or does not have. The standard definition of “the 

probability that member x is p” is the fraction of the population for which 

p is true. But an equally reasonable definition is “the probability that x is 
a member of a random sample of the subset of the population for which 

p is true.” According to the standard definition, the probability of p and q 

cannot be greater than the probability of p. But, according to the second, the 

opposite inequality can hold: x might be more likely to appear in a random 

sample of individuals who are both p and q than in a random sample of 

the same size of individuals who are p. In other words, the probability that 

a randomly chosen bank teller is Linda is probably much lower than the 
probability that a randomly chosen feminist bank teller is Linda. Another 

way of expressing this point is that the probability that a randomly chosen 

member of the set “is a feminist bank teller” may be linda is greater than 

the probability that a randomly chosen member of the set “is a bank teller,” 

is Linda. 

A second heuristic is that in assessing the frequency of an event, peo­
ple take excessive account of information that is easily available or highly 
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salient, even though a selective bias is obviously involved. For this rea­

son, people tend to overestimate the probability of rare events because such 
events are highly newsworthy while nonoccurrences are not reported. Thus, 

people worry much more about dying in an accident while flying than they 

do while driving, even though air travel is much safer than automobile 

travel. 

A third heuristic in problem solving is to start from an initial guess, cho­

sen for its representativeness or salience, and adjust upward or downward 
toward a final figure. This is called anchoring because there is a tendency 

to underadjust, so the result is too close to the initial guess. Probably as 

a result of anchoring, people tend to overestimate the probability of con­

junctions (p and q) and underestimate the probability of disjunctions (p or 

q). 

For an instance of the former, a person who knows an event occurs with 

95% probability may overestimate the probability that the event occurs 10 
times in a row, suggesting a probability of 90%. The actual probability is 

about 60%. In this case the individual starts with 95% and does not adjust 

downward sufficiently. Similarly, if a daily event has a failure one time in 

a thousand, people will underestimate the probability that a failure occurs 

at least once in a year, suggesting a figure of 5%. The actual probability is 

30.5%. Again, the individual starts with 0.1% and doesn’t adjust upward 
enough. 

A fourth heuristic is that people prefer objective probability distributions 

to subjective distributions derived from applying probabilistic principles, 

such as the principle of insufficient reason, which says that if you are com­

pletely ignorant as to which of several outcomes will occur, you should 

treat them as equally probable. For example, if you give a subject a prize 
for drawing a red ball from an urn containing red and white balls, the sub­

ject will pay to have the urn contain 50% red balls rather than contain an 

indeterminate percentage of red balls. This is the famous Ellsberg paradox, 

analyzed in �1.7. 

Choice theorists often express dismay over the failure of people to apply 

the laws of probability and conform to normative decision theory. Yet, peo­

ple may be applying rules that serve them well in daily life. It takes many 
years of study to feel at home with the laws of probability, the understand­

ing of which is the product of the last couple of hundred years of scientific 

research. Moreover, it is costly, in terms of time and effort, to apply these 

laws even if we know them. Of course, if the stakes are high enough, it is 
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worthwhile to make the effort or engage an expert who will do it for you. 

But generally, as Kahneman and Tversky suggest, we apply a set of heuris­
tics that more or less get the job done. Among the most prominent heuristics 

is simply imitation: decide what class of phenomenon is involved, find out 

what people normally do in that situation, and do it. If there is some mech­

anism leading to the survival and growth of relatively successful behaviors, 

and if the problem in question recurs with sufficient regularity, the choice-

theoretic solution will describe the winner of a dynamic social process of 
trial, error, and imitation. 

Should we expect people to conform to the axioms of choice theory— 

transitivity, independence from irrelevant alternatives, the sure-thing prin­

ciple, and the like? Where we know that individuals are really optimizing, 

and have expertise in decision theory, we doubtless should. But this applies 

only to a highly restricted range of actions. In more general settings we 

should not. We might have recourse to Darwinian analysis, demonstrat­
ing that under the appropriate conditions individuals who are genetically 

constituted to obey the axioms of choice theory are better fit to solve gen­

eral decision-theoretic problems and hence will emerge triumphant through 

an evolutionary dynamic. But human beings did not evolve facing general 

decision-theoretic problems. Rather, they faced a few specific decision­

theoretic problems associated with survival in small social groups. We may 
have to settle for modeling these specific choice contexts to discover how 

our genetic constitution and cultural tools interact in determining choice 

under uncertainty. 




