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Two
Ways
to
Move
Material



Introducing a Variable 

“No
man
is
an
island,
entire
of
itself,”
said
the
En
glish
poet
John
Donne.

Nor
 is
any
other
organism,
cell,
 tissue,
or
organ.
We’re
open
 systems,

continuously
exchanging
material
with
our
surroundings
as
our
parts
do

with
their
surroundings.
In
all
of
these
exchanges,
one
physical
pro
cess

inevitably
participates.
In
that
pro
cess,
diffusion,
thermal
agitation,
and

place-
to-
place
concentration
differences
combine
to
produce
net
move-
ments
of
molecules.
On
almost
any
biologically
relevant
scale,
it
can
be

described
by
exceedingly
precise
statistical
statements,
formulas
that
take

advantage
 of
 the
 enormous
 numbers
 of
 individual
 entities
 moving

around.
Since
it
incurs
no
metabolic
expenditure,
it’s
at
once
dependable

and
free.


But
except
over
microscopic
distances,
diffusion
proceeds
at
a
glacial

pace.
For
most
relevant
geometries,
doubling
distance
drops
the
rate
of

transport
per
unit
time
by
a
factor,
not
of
two,
but
of
four.
Diffusive
trans-
port
that
would
take
a
millisecond
to
cover
a
micrometer
would
require

no
less
than
a
thousand
seconds
(17
minutes)
to
cover
a
millimeter
and

all
of
a
billion
(a
thousand
million
seconds
or
3
years)
for
a
meter.
Diffu-
sion
 coefficient,
 the
 analog
 of
 conventional
 speed,
 has
 dimensions
 of

length
squared
per
time
rather
than
length
per
time—
it’s
not
a
rate
in
the

ordinary
sense.


Some
organisms
rely
exclusively
on
diffusion
to
move
material
internally

and
to
transfer
it
to
and
from
their
surroundings.
Unsurprisingly,
they’re

either
very
small
or
very
thin
or
(as
 in
many
coelenterates
and
macro-
algae)
bulked
up
with
metabolically
inert
cores.
Diffusion
coeffi
cients
in

air
run
about
10,000
times
higher
than
in
water,
which
translates
into

a
hundred-
fold
(the
square
root
of
10,000)
distance
advantage.
So
under

equivalent
circumstances,
those
living
in
air
or
transferring
gases
(as
do

many
arthropods)
can
get
somewhat
larger—
perhaps
one
hundred-
fold—

but
then
still
face
that
daunting
size-
dependence
of
diffusion.
In
response,

one
might
say,
macroscopic
organisms
inevitably
augment
diffusion
with

an
additional
physical
agency,
variously
termed
convection,
advection,
or

just
bulk
flow,
in
any
case
fl
uid
flow
en
masse.
Circulatory
systems
as
con-
ventionally
recognized
represent
only
one
version
of
this
ubiquitous
fi
x.
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Indeed,
the
size
scale
at
which
life
switches
from
reliance
solely
on

diffusive
 exchange
 to
 convection
 supplementation—
very
 roughly
 10

micrometers—corresponds,
roughly,
to
the
switch
from
cellular
to
multi-
cellular
 or
ga
ni
za
tion.
 While
 being
 essentially
 one-
 or
 two-
dimensional

does
 permit
 macroscopic
 size,
 it
 comes
 with
 obvious
 limitations.
 And

while
many
plant
cells,
about
which
more
shortly,
do
get
comparatively

large,
they
quietly
practice
intracellular
bulk
fl
ow.


Solari
et
al.
(2006)
explore
this
transition
point,
using
as
material
fl
ag-
ellated
colonial
green
algae,
mainly
Volvox.
In
this
genus,
active
cells
popu-
late
the
periphery
of
spherical
colonies
around
0.5
millimeters
in
diameter.

The
daughter
colonies
within
(as
in
plate
1.1)
depend
on
coordinated
beat-
ing
of
the
parental
flagella
on
the
outside
of
the
colony
to
create
enough

external
flow
for
adequate
exchange
of
metabolites
and
wastes.
Even
at

this
relatively
small
size,
flow
plays
an
important
role—
in
effect
they
have

circulatory
systems
located
around
their
external
surfaces.
Defl
agellating

colonies
 lowers
 photosynthetic
 productivity;
 providing
 forced
 external

fl
uid
motion
(a
bubbler
in
the
suspension)
restores
normality.


One
might
expect
good
design
to
balance
the
two
physical
pro
cesses.

Excessive
reliance
on
diffusion
would
limit
size,
slow
the
pace
of
life,
or

require
 excessively
 surface-
rich
 geometries.
 Excessive
 reliance
 on
 fl
ow

would
impose
an
unnecessary
cost
of
pumping
(chapter
10)
or
require
an

unnecessarily
large
fraction
of
body
volume
for
pipes,
pumps,
and
fl
uid.
So

for
biological
systems
a
default
ratio
of
convective
transport
to
diffusive

transport
should
be
around
one.
As
it
happens,
the
chemical
engineers

provide
us
with
just
such
a
ratio.
This
so-
called
Péclet
number,
Pe,
is
a

straightforward
dimensionless
expression:


vl
Pe = ,
 (1.1)


D 

where
v
is
fl
ow
speed,
l
is
transport
distance,
and
D
is
the
diffusion
coef-
ficient.
(Confusingly,
a
heat-
transfer
version
of
the
Péclet
number
may
be

more
common
than
this
mass-
transport
form;
it
puts
thermal
diffusivity

rather
than
the
molecular
diffusion
coeffi
cient
in
its
denominator.)


Calculating
values
of
the
Péclet
number
can
give
us
more
than
merely

a
way
to
check
up
on
the
per
for
mance
of
the
evolutionary
pro
cess.
Often

it
can
test
hypotheses
about
the
primary
function
of
various
features
of

organisms—“primary”
in
the
sense
of
being
most
constraining
on
design.

Perhaps
that
justification
can
be
best
put
as
a
series
of
examples,
which

will
follow
after
a
few
words
about
the
origin
of
the
ratio.


One
can
view
the
Péclet
number
several
ways.
The
simplest
sees
it
as

the
ratio
of
a
convective
or
fl
ow
rate,
v,
to
a
diffusion
rate,
D/l.
A
slightly

more
formal
version
combines
a
simple
numerator,
mv,
for
fl
owing
mo-
mentum,
with
a
denominator
that
represents
a
simplified
form
of
Fick’s
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first
 law
 for
diffusive
momentum
 transport,
DSm/V,
where
S
 is
 cross-
sectional
area
and
V
is
volume.
Taking
l2
as
a
crude
proxy
for
area
and
l3


for
volume,
one
gets
equation
(1.1).

From
a
slightly
different
viewpoint,
the
Péclet
number
represents
the


product
of
the
Reynolds
number
(Re)
and
the
Schmidt
number
(Sc).
The

fi
rst,


ρlv
Re = , 
 (1.2)

µ 
where
ρ
and
μ
are
fluid
density
and
viscosity
respectively,
gives
the
ratio

of
inertial
to
viscous
forces
in
a
flow.
At
high
values,
bits
of
fluid
retain
a

lot
of
individuality,
milling
turbulently
as
in
a
disorderly
crowd;
at
low

values,
bits
of
fl
uid
have
common
aspirations
and
tend
to
march
in
lock-
step
formation.
 In
short,
Reynolds
number
characterizes
 the
fl
ow.
The

Schmidt
number,


µ
Sc = ,
 (1.3)ρD 

is
the
ratio
of
the
fluid’s
kinematic
viscosity
(viscosity
over
density,
a
kind

of
relative
viscosity)
to
the
diffusion
coefficient
of
the
material
diffusing

through
it.
It
gives
the
relative
magnitudes
of
the
mobilities
of
bulk
mo-
mentum
(solution
flow)
and
molecular
mass
(solute
diffusion).
In
short,

it
characterizes
the
material
combination,
solute
with
solvent,
that
does

the
fl
owing
and
diffusing.


Of
course
the
way
we’ve
swept
aside
all
geometrical
details
puts
severe

limits
on
what
we
can
reasonably
expect
of
numerical
values
of
Pe
and

should
be
kept
in
mind.
Only
for
comparisons
among
geometrically
simi-
lar
systems
can
we
have
real
confidence
in
specific
numbers.
Furthermore,

we’ll
 ignore
 the
 tacit
 requirement
 that,
 strictly
 speaking,
 diffusion
 and

flow
should
be
in
the
same
direction.
Still,
because
living
systems
vary
so

widely
in
size,
even
order-
of-
magnitude
values
should
be
instructive.


As
a
quick
illustration
of
the
way
a
value
of
the
Péclet
number
can
shed

light
on
a
problem,
consider
the
way
we
all-
too-
often
demonstrate
diffu-
sion
for
students.
One
drops
a
crystal
of
some
soluble
material
whose
so-
lution
is
intensely
colored
into
a
container
of
water,
and
the
class
watches

the
spread
of
colorant
through
the
container.
Some
years
ago
I
wrote
a

short
diatribe
about
the
scheme
in
response
to
a
published
recommenda-
tion
for
its
use
(Vogel
1994a).
I
claimed
that
such
demonstrations

were

fraudulent,
that
they
relied
on
convection
rather
than
diffusion
for
mate-
rial
 transport,
and
 in
part
based
my
case
on
Péclet
number.
Here’s
 the

argument,
put
more
pointedly
in
the
present
context:


Imagine
 that
 one
 can
 notice
 diffusion
 in
 a
 liquid
 when
 it
 has
 trans-
ported
something
about
a
millimeter.
Assume
a
diffusion
coeffi
cient
of
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10−10
meters
squared
per
second,
corresponding
to
a
non-
electrolyte
with

a
molecular
weight
of
about
100.
In
that
case
a
flow
speed
of
a
mere
1

micrometer
per
second
yields
a
Péclet
number
of
1.0
(eq.
1.1).
So
at
any

higher
speed,
convection
will
be
a
greater
transport
agent
than
diffusion.

1
micrometer
per
second—
8.6
centimeters
per
day—
that’s
a
glacial
rate
in

an
unusually
 literal
 sense.
Under
no
easily
contrived
circumstances
can

water
in
a
fully
liquid
state
be
kept
still
enough
to
meet
such
a
criterion!


Now
for
a
few
more
biological
cases
where
calculating
a
Péclet
num-
ber
might
prove
instructive.


Inside Jobs 

The Sizes of Our Capillaries and Kidney Tubules 

Consider
our
circulatory
systems,
in
par
tic
u
lar
the
size
of
the
ultimate
ves-
sels,
capillaries,
where
function
depends
both
on
diffusion
and
on
fl
ow.
Do

we
make
capillaries
of
the
proper
size—or,
to
be
less
judgmental,
can
we

rationalize
their
remarkably
invariant
size?
Efficient
operation
ought
to

be
important.
After
all,
we
devote
about
6.5
percent
of
our
body
volume

to
blood
and
expend
about
11
percent
of
our
resting
metabolic
power

pushing
it
around.
Apparently
we
do
size
them
properly.
A
capillary
ra-
dius
of
3
micrometers,
a
flow
of
0.7
millimeters
per
second,
and
a
dif-
fusion
coefficient
 (assuming
oxygen
matters
most)
of
18
×
10 −10
meters

squared
per
second
yield
a
Péclet
number
of
1.2.
If
anything,
the
value

turns
out
a
bit
closer
to
1.0
than
one
expects,
considering
its
underlying

approximations
(Middleman
1972).


Of
course
nature
might
pick
different
combinations
of
radius
and
fl
ow

speed
without
offending
Péclet.
 (We’ll
 ignore
 the
 issue
of
 the
fit
of
red

blood
cells
to
capillaries
by
tacitly
assuming
an
evolutionarily
negotiable

RBC
size.)
Smaller
vessels
would
permit
faster
fl
ow
and
lower
blood
vol-
ume,
but
the
combination
would
(following
the
Hagen-
Poiseuille
equa-
tion)
disproportionately
increase
pumping
cost.
Larger
vessels
would
entail

greater
blood
volume,
the
latter
already
fairly
high,
and
slower
fl
ow,
which

would
make
the
system
less
responsive
to
changes
in
demand.
One
sus-
pects
something
other
than
coincidence
behind
the
similarity
of
our
rela-
tive
blood
volume,
6.5
percent,
to
that
of
an
octopus,
5.8
percent
(Martin

et
al.
1958).


Quite
likely
this
choice
of
capillary
size,
based
on
Péclet
number
and

some
compromise
of
volume
versus
cost,
sets
the
sizes
of
the
other
vessels
of

our
circulatory
systems
in
a
cascade
of
consequences.
According
to
Mur-
ray’s
law
(LaBarbera
1990),
the
costs
of
construction
and
operation
set
the

relative
diameters
of
all
vessels.
Thus,
a
factor
that
sets
vessel
diameter
at

one
level
in
their
hierarchy
ends
up
determining
the
diameters
of
all
the
rest.
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Blood 

Glomerulus 

Proximal 
convoluted 

tubule 

Loop of 
Henle 

Distal 
convoluted 

tubule 

Urine 

Figure
1.1.
An
unusually
diagrammatic
view
of
the
fi
ltration
and
reabsorption

stages
of
most
vertebrate
kidneys.


The
rule
is
a
simple
one—
branching
conserves
the
cubes
of
the
radii
of
ves-
sels,
so
the
cube
of
the
radius
of
a
given
vessel
equals
the
sum
of
the
cubes

of
the
vessels
at
some
fi
ner
level
of
branching
that
it
supplies
or
drains.


What
 about
 the
 reabsorptive
 tubules
 of
 our
 kidneys,
 in
 par
tic
u
lar

those
just
downstream
from
the
glomerular
ultrafiltration
apparatus
(the

“proximal
convoluted
tubules”),
as
in
fi
gure
1.1.

We’re
again
looking
at
a

system
 that
 represents
 a
 far-
from-
insignificant
 aspect
 of
 our
 personal

economies.
Twenty
to
25
percent
of
the
output
of
the
heart
passes
through

this
one
pair
of
organs.
About
20
percent
of
the
plasma
volume
squeezes

out
of
 the
blood
 in
a
pass,
 in
absolute
 terms
around
60
milliliters
per

minute
per
kidney.
Each
kidney
consists
of
about
2
million
individual

units,
the
nephrons,
operating
in
parallel.
Thus
each
glomerulus
sends
on

for
selective
reabsorption
about
0.5×
10−12
cubic
meters
per
second.


The
 sites
of
 the
 initial
phase
of
 reabsorption
are
 these
proximal
 tu-
bules,
each
about
40
micrometers
in
inside
diameter.
Combined
with
the

earlier
figure
for
volume
flow,
that
determines
a
flow
speed
of
0.40
mil-
limeters
per
second.
So
we
have
speed
and
size.
Diffusion
coeffi
cient
can

be
assigned
no
single
number,
since
the
tubules
reabsorb
molecules
from

small
organic
molecules
and
ions
to
small
proteins
with
molecular
weights

of
around
40,000.
Coefficients
most
likely
range
from
about
0.75
×
10 −10


to
40
×
10 −10
meters
squared
per
second.
That
produces
Péclet
numbers

from
2
to
100.


At
first
glance
these
seem
a
bit
high,
but
the
story
has
another
part.
The

calculation
uses
the
velocity
of
the
filtrate
as
it
enters
the
tubules
from
the

glomeruli.
The
tubules,
though,
reabsorb
at
least
80
percent
of
the
volume

of
the
filtrate,
so
by
the
time
fluid
leaves
them,
its
speed
has
dropped
by
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at
least
a
factor
of
5.
That
gives
exit
Péclet
numbers
a
range
of
0.4
to
20,

with
an
average
 in
between—
quite
 reasonable
values,
 indicative
 (to
be

presumptuous)
of
good
design.
The
cost
of
pushing
flow
through
the
tu-
bules
is
low,
at
least
relative
to
the
power
requirements
of
fi
ltration
and

of
the
kidney’s
chemical
activities.
So
one
might
speculate
that
the
system

is
contrived
to
bias
its
Péclet
numbers
so
they
exceed
one,
albeit
not
by

much,
for
most
molecules
over
most
of
the
lengths
of
the
tubules.


The Sizes of Plant Cells and Algal Colonies 

One
can
argue
that
the
boundary
between
the
cellular
and
the
super-
(or

multi-)
cellular
world
reflects
the
upper
size
limit
of
practical,
diffusion-

based
 systems.
 In
 short,
 for
 anything
 but
 exceedingly
 leisurely
 large-
scale
life
to
get
above
the
typical
cell
size
requires
some
kind
of
convec-
tive
augmentation
for
moving
material.
That
makes
the
cellular
world
a

diffusion-
based
one
and
the
supercellular
world
a
convection-
augmented

one.
I
like
the
view
because
it
tickles
my
par
tic
u
lar
bias
toward
physical

determinants.


But
I
have
to
admit
that
it
won’t
work
for
plant
cells.
On
average,
the

cells
of
vascular
plants
run
about
ten
times
the
size
of
animal
cells,
taking

“size”
 as
 typical
 length.
 They
 are
 of
 the
 order
 of
 100
 micrometers
 in

length
if
somewhat
less
in
width,
so
25
micrometers
should
be
typical
of

the
distance
from
cell
wall
to
center.
That
increased
size
might
have
dev-
astating
consequences
for
transport
were
it
not
for
the
internal
convec-
tion
common
to
such
cells.
Put
another
way,
in
plants
the
size
scale
at

which
convective
transport
comes
into
play
doesn’t
correspond
to
the
sizes

of
plant
cells.


That
bulk
flow
system
within
plant
cells
goes
by
the
name
“cyclosis.”

We
 know
 quite
 a
 lot—
but
 far
 from
 all—
about
 how
 microfi
laments
 of

actin
(a
key
component
of
muscle)
power
it,
but

here
only
its
speed
mat-
ters.
That
speed
is
around
5
micrometers
per
second
(Vallee
1998).
Focus-
ing
on
oxygen
penetration
and
using
a
penetration
distance
of
25
microm-
eters
gives
a
Péclet
number
of
0.07.
That
tells
us
that
the
system
remains

diffusion
 dominated,
 that
 cyclosis
 doesn’t
 reach
 a
 significant
 speed
 to

make
much
difference
to
transport
effectiveness.
Looking
at
carbon
diox-
ide
penetration,
with
a
diffusion
coefficient
of
0.14
meters
squared
per

second,
 raises
 that
number
 too
 little
 to
change
 the
conclusion.
So
why

bother
with
cyclosis?


Perhap
we
should
take
a
different
view.
From
size,
speed,
and
a
pre-
sumptive
Péclet
number
around
1
we
can
calculate
a
diffusion
coeffi
cient

of
 1.25×10−10
 meters
 squared
 per
 second.
 That
 corresponds
 to
 a
 non-
ionized
molecule
with
a
molecular
weight
of
about
6000.
Thus
plant
cells

appear
diffusion
dominated
for
dissolved
gases,
amino
acids,
sugars,
and
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the
like.
But
they
make
significant
use
of
(in
effect,
need)
convection
for

moving
proteins
and
other
macromolecules,
where
molecular
weights
are

in
the
thousands.
In
a
sense,
of
course,
that
reliance
on
cyclosis
bolsters
the

underlying
argument
about
the
practical
size
limit
of
diffusional
systems.


Essentially
the
same
picture
emerges
from
a
different
(and
much
more

sophisticated)
analysis,
one
by
Pickard
(2006).
The
situation
of
an
organ-
elle
provides
the
vantage
point

here.
If
stationary
in
the
cytoplasm,
diffu-
sion
limits
its
effective
rates
of
absorption
or
secretion,
but
cyclosis
even

at
1
micrometer
per
second
would
produce
sufficient
convective
augmen-
tation
to
double
transport
rates.
That
point,
Pe = 1.0,
corresponds
to
an

organelle
size
of
1
micrometer
and
a
diffusion
coeffi
cient
of
10−12
meters

squared
per
second—
a
molecular
weight
of
about
10,000,000.
It
estab-
lishes
 another
 transition
 point
 as
 well.
 For
 values
 below
 1.0,
 fl
ux
 in-
creases
with
Pe2,
while
for
higher
values,
flux
increases
only
with
Pe1/3.

Pickard
(2006)
also
provides
an
especially
good
entry
into
the
nonbio-
logical
literature
on
Péclet
number.


That
boundary
between
cellular
and
multicellular
worlds
also
receives

scrutiny
in
the
work
on
Volvox
by
Solari
et
al.
(2006)
that
was
mentioned

earlier.
Mature
colonies
apparently
require
flow
for
adequate
growth
of

gonidia
and
the
daughter
colonies
within
their
lumens.
One
might
imagine

that
inverting
each
cell
so
flagella
faced
inward
rather
than
outward
would

provide
 proper
 internal
 circulation—
the
 equivalent
 of
 cyclosis.
 But
 the

flagella
also
act
as
propulsive
devices
that
move
the
colonies
around,
pre-
venting
sinking
and
enabling
them
to
explore
spatial
variation
in
nutrient

concentration.
Still,
putting
them
on
the
outside
does
help
the
situation.

Augmenting
flow
around
the
outside
assures
minimal
local
depletion
and

gives
internal
diffusive
transport
a
better
starting
point.
The
report
gives

Péclet
numbers
in
the
hundreds,
but
these
take
colony
diameter
as
charac-
teristic
length.
I
think
a
more
appropriate
length
for
present
purposes
is

that
of
the
flagella,
about
12
micrometers,
the
length
over
which
convec-
tion
and
diffusion
might
well
balance.
Combining
that
with
a
swimming

speed
of
400
micrometers
per
second
and
a
diffusion
coefficient
of
2
×10−10


meters
 squared
 per
 second
 gives
 Pe=24.
 So
 the
 system
 looks
 mildly

convection-
biased,
which
may
offset
the
lack
of
internal
flow
and
the
re-
sulting
reliance
of
daughter
colonies
on
diffusion
within
their
parents.


Transport at External Surfaces 

Sinking Speeds of Phytoplankton 

Diatoms
plus
some
other
kinds
of
small
algae
account
for
nearly
all
the

photosynthetic
 activity
 of
 open
 oceans.
 Paradoxically,
 most
 of
 these

light-
dependent
phytoplankters
are
negatively
buoyant
most
of
the
time.
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Not
 that
 they
sink
rapidly;
4
micrometers
per
 second
 (a
 foot
a
day,
 in

antediluvian
everyday
units)
is
typical.
According
to
one
common
expla-
nation,
 such
 sinking
 improves
access
 to
carbon
dioxide
by
minimizing

the
 organism’s
 own
 local
 depletion
of
 dissolved
 gas.
 In
 effect,
 the
 cell

walks
away
from
its
personal
environmental
degradation.
Still
better,
it

walks
away
without
locomotory
cost.
Of
course
it
(or
its
progeny)
will

eventually
suffer,
inasmuch
as
sinking
takes
it
to
depths
at
which
respira-
tory
demand
exceeds
photosynthetic
rate.
Somehow
(and
wave-
induced

water
mixing
 comes
 into
 the
picture)
 some
organism-
level
 cost-
benefi
t

analysis
favors
this
slight
negative
buoyancy.


Calculating
a
Péclet
number
casts
serious
doubt
on
the
notion
of
es-
cape
from
local
CO2
depletion,
doubt
long
ago
raised
(with
an
equivalent

argument)
by
Munk
and
Riley
(1952).
From
that
sinking
rate
of
4
mi-
crometers
per
second,
the
diffusion
coefficient
of
CO2,
14
×

10−10
meters

squared
per
second,
and
as
distance
the
10-
micrometer
diameter
of
a
typi-
cal
diatom,
we
get
a
value
of
0.03.
So
diffusion
rules;
convection,
here

due
to
sinking,
will
not
significantly
improve
access
to
carbon
dioxide.
We

might
 have
 chosen
 a
 larger
 distance
 over
 which
 CO2
 had
 to
 be
 trans-
ported
to
be
available
at
an
adequate
concentration,
but
even
a
distance

ten
times
greater
would
not
raise
Pe
enough
to
pose
a
serious
challenge
to

the
conclusion.


Why,
then,
should
a
phytoplankter
sink
at
all?
The
argument
tacitly

assumed
uniform
concentration
of
dissolved
gas
except
where
affected

by
the
organism’s
activity.
It
left
open
the
possibility
that
a
diatom
might

be
 seeking
 regions
 of
 greater
 concentration,
 even
 lowering
 its
 sinking

rate
wherever
life
went
better,
something
mentioned
earlier
when
consid-
ering
the
much
larger
Volvox.
In
a
world
mixed
by
the
action
of
waves,

that’s
uncertain,
although
patchiness
isn’t
unknown
and
(as
appears
the

case)
buoyancy
does
 in
 fact
vary
with
 the
physiological
 state
of
a
cell.

Perhaps
phytoplankters
bias
their
buoyancy
toward
sinking
so
they
won’t

rise
in
the
water
column
and
get
trapped
by
surface
tension
at
the
sur-
face.
If
perfect
neutrality
can’t
be
assured,
then
sinking
may
be
prefera-
ble,
provided
the
speed
of
sinking
can
be
kept
quite
low—
as
it
is.
Surface

tension
may
be
a
minor
matter
for
us,
but
it
looms
large
for
the
small.
In

the
millimeter
 to
 centimeter
 range
 a
 creature
 can
walk
on
 it
 since
 the

Bond
number,
the
ratio
of
gravitational
force
to
surface
tension
force,

is
low.
A
smaller
creature
may
not
be
able
to
get
loose
once
gripped
by

it;
specifically,
the
Weber
number,
the
ratio
of
inertial
force
to
surface

tension
force
may
drop
too
far
(Vogel
1994b).
But
risky
surface
entrap-
ment
presumes
that
the
surfaces
of
these
diatoms
and
other
small
or-
ganisms
are
fairly
hydrophobic,
which,
I’m
told,
may
not
be
the
case.

So
another
hypothesis
would
be
handy—
plus
some
experimental
work

on
interactions
of
individuals
with
interfaces.
Calculating
Péclet,
Bond,
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and
Weber
numbers
certainly
raises
a
possibility
that
at
least
ought
to

be
ruled
out.


I
should
note
that
a
somewhat
different
version
of
the
Péclet
number

has
 come
 into
 use
 in
 studies
 of
 natural
 populations
 of
 phytoplankton.

Instead
of
molecular
diffusivity,
it
uses
so-
called
eddy
diffusivity,
an
effec-
tive
diffusivity
set
by
a
combination
of
turbulent
mixing
(mainly)
and
mo-
lecular
diffusivity
(additionally).
Values
of
D
run
around
10−5
to
10−3
(Mac-
Intyre
1993)
rather
than
the
2
×
10−9
and
down
for
molecular
diffusion
in

water.
A
useful
paper
with
copious
references
is
O’Brien
et
al.
(2003).


Swimming by Microorganisms and Growing by Roots 

We
most
often
 think
of
movement
by
active
swimming
rather
 than
by

passive
sinking.
Some
years
ago,
Edward
Purcell
(1977),
a
physicist,
wrote

a
stimulating
essay
about
the
physical
world
of
the
small
and
the
slow,

looking
in
par
tic
u
lar
at
bacteria.
Among
other
things,
he
asked
whether

swimming,
by,
say,
Escherichia coli,
would
improve
access
to
nutrients.

(Yes,
 that’s
 the
full
name
of
E. coli.)
By
his
calculation,
a
bacterium
1

micrometer
long,
by
swimming
at
20
micrometers
per
second
(see
Berg

1993)
would
only
negligibly
increase
its
food
supply,
assuming
it
to
be

dissolved
sugar.
To
augment
its
supply
by
a
mere
10
percent,
it
would

have
to
go
no
less
than
700
micrometers
per
second.
That’s
well
above

the
fastest
swimming
speed
I’ve
encountered
for
a
bacterium—
about
140

micrometers
per
second
for
a
free-
living
marine
species,
Vibrio harveyi 
(Mitchell
et
al.
1995).


Purcell’s
answer
to
the
question
of
why
swim
at
all
turned
on
the
het-
erogeneity
of
ordinary
environments
and
 the
advantage
of
 seeking
 the

bacterial
equivalent
of
greener
pastures,
as
suggested
above
for
diatoms.

That
rationalization,
incidentally,
receives
support
from
a
recent
litera-
ture
on
a
sort
of
micro-
patchiness
within
macroscopically
uniform
liquid

environments.
Otherwise
the
bacterium
resembles
a
cow
that
eats
the
sur-
rounding
grass
and
then
finds
it
most
efficient,
not
to
walk,
but
to
stand

and
wait
for
the
grass
to
grow
again.


The
Péclet
number
permits
us
to
cast
the
issue
in
more
general
terms.

Sucrose
has
a
diffusion
coefficient
of
5.2
×
10 −10
meters
squared
per
sec-
ond;
together
with
the
data
above
we
get
a
Péclet
number
of
about
0.04.

Swimming,
as
Purcell
said,
should
make
no
significant
difference.
But
the

conclusion
should
not
be
general
for
microorganisms.
Consider
a
ciliated

protozoan,
say
Tetrahymena,
which
is
40
micrometers
long
and
can
swim

at
450
micrometers
per
 second.
 If
oxygen
access
 is
at
 issue,
 the
Péclet

number
 comes
 to
 10,
 indicating
 that
 swimming
 helps
 a
 lot.
 Indeed
 it

might
 just
 be
 going
 unnecessarily
 fast,
 prompting
 the
 thought
 that
 it

might
swim
for
yet
another
reason—or
reasons.
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Growing
roots
provide
a
case
just
as
counterintuitive
as
that
of
swim-
ming
bacteria
but
in
the
opposite
direction
(Kim
et
al.
1999).
A
root
can

affect
nutrient
uptake
by
altering
local
soil
pH.
Root
elongation
speeds

run
(perhaps
an
inappropriate
word)
around
0.5
micrometers
per
second,

again
down
in
the
range
of
a
glacier
not
yet
goaded
by
global
warming.

But
 it
 turns
out
 to
 constitute
a
 significant
velocity,
 enough
 so
 that
 (at

least
in
sandy
soil)
the
Péclet
number
gets
well
above
1.
Taking
root
di-
ameter
as
length,
Pe
values
for
rapidly
diffusing
H+
ions
may
exceed
30.

Thus
motion
most
likely
affects
the
pH
distribution
more
than
does
dif-
fusion
in
the
so-
called
rhizosphere.


Flow Over Sessile Organisms 

For
sinking
diatoms
and
swimming
microorganisms
we
asked
about
why

creatures
did
what
they
did.
In
some
other
situations
we
can
test
claims

about
the
physical
situations
in
which
they
live,
in
par
tic
u
lar
about
local

flows.
How
fast
must
air
or
water
flow
over
an
organism
to
affect
ex-
change
pro
cesses
significantly?
To
put
the
matter
in
sharper
terms,
can

calculating
Péclet
numbers
help
us
evaluate
a
claim
that
extremely
slow

flow
matters?
After
all,
neither
producing
nor
mea
sur
ing
very
low
speed

flows
is
the
most
commonplace
of
experimental
procedures
so,
at
the
least,

cited
speeds
should
be
viewed
with
a
skeptical
eye.


For
instance,
consider
the
claim
that
a
flow
of
10
millimeters
per
second

significantly
 increases
 photosynthesis
 in
 a
 green
 alga,
 Spirogyra
 (plate

1.2
left),
consisting
of
threadlike
filaments
about
50
micrometers
in
di-
ameter
(Schumacher
and
Whitford
1965).
Inserting
the
diffusion
coeffi
-
cient
 of
 CO2
 gives
 a
 Péclet
 number
 around
 100
 and
 suggests
 that
 far

slower
flows
should
also
matter.
Now
one
wonders
about
 the
opposite

issue,
whether
 so-
called
 still
water,
 the
 control
 in
 such
comparisons,
 is

still
enough
to
achieve
truly
negligible
flow.
My
own
experience
suggests

that
 thermal
convection
and
per
sis
tence
of
currents
 left
 from
the
 initial

filling
of
a
tank
can
complicate
attempts
to
prevent
water
from
fl
owing.

Still
water
doesn’t
just
happen,
and
that
may
affl
ict
laboratory
investiga-
tions
as
well
as
classroom
demonstrations.


Another
paper
reports
that
a
flow
of
0.2
to
0.3
millimeters
per
second,

about
a
meter
per
hour,
significantly
increases
photosynthesis
in
an
aquatic

dicot,
 Ranunculus pseudofl uitans
 (Westlake
 1977;
 plate
 1.2
 right).
 Its

finely
 dissected,
 almost
 filamentous,
 leaves
 are
 about
 0.5
 millimeters

across.
A
Péclet
number
of
about
300
gives
credibility
to
an
otherwise

eyebrow-
raising
report.
One
again
guesses
that
even
slower
fl
ows
should

be
significant.
The
tables
turn—one
now
becomes
skeptical
of
any
casual

assumption
of
effectively
still
water
in
ponds
and
lakes.
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A
third
paper
(Booth
and
Feder
1991)
considers
the
influence
of
water

fl
ow
on
the
partial
pressure
of
oxygen
adjacent
to
the
skin
of
a
salaman-
der,
Desmognathus.
The
authors
found
that
currents
as
low
as
5
millime-
ters
per
second
increased
that
partial
pressure,
facilitating
cutaneous
res-
piration.
With
a
diameter
of
20
millimeters,
that
flow
produces
a
Péclet

number
of
50,000.
Even
assuming
instead
a
1-
millimeter
thick
mixed
re-
gime
at
its
skin
gives
a
Péclet
number
of
5,000.
A
sessile
Desmognathus 
may
need
flow,
but
it
surely

doesn’t
need
much.
Once
again,
the
quality
of

any
still-
water
control
becomes
important—
something
best
checked,
per-
haps
by
watching
a
blob
of
colorant,
before
submitting
a
paper
explicitly

or
tacitly
assuming
it.


Two Functions for Gills 

Many
aquatic
animals
both
respire,
exchanging
dissolved
gases,
and
sus-
pension
 feed,
 extracting
 edible
 particles
 from
 the
 surrounding
 waters.

Structures
such
as
gills,
with
lots
of
surface
relative
to
their
volumes,
can

perform
either
function.
While
most
suspension-
feeding
appendages
may

look
nothing
like
gills,
some
not
only
look
like
gills
but
share
both
name

and
functions.
No
easy
argument
suggests
that
bifunctional
gills
balance

their
two
functions.
Quick
calculations
of
Péclet
number
can
tell
us
which

function
dominates
a
par
tic
u
lar
design
and
can
thus
point
to
the
features

that
distinguish
a
respiratory
gill
from
a
dual-
function
gill.


Consider
a
keyhole
limpet,
Diodora aspera,
a
gastropod
mollusk
that

uses
 its
 gills
 for
 respiration.
With
 gill
 filaments
 about
10
micrometers

apart,
a
flow
rate
of
0.3
millimeters
per
second
(according
to
Janice
Volt-
zow),
and
the
diffusion
coefficient
for
oxygen,
the
Péclet
number
comes

to
about
2.
That’s
about
as
good
as
it
gets
for
a
respiratory
gill.
The
dual-
function
gills
of
a
bivalve
mollusk,
 the
mussel
Mytilus edulis,
 contrast

sharply.
They
have
an
effective
distance
of
about
200
micrometers
and

a
fl
ow
speed
of
about
2
millimeters
per
second
(Nielsen
et
al.
1993).
For

oxygen
access,
that
gives
a
Péclet
number
around
100.
Clearly,
mussel

gills
pump
far
more
water
than
would
be
necessary

were
respiration
the

design-
limiting
function.


One
can
do
analogous
calculations
for
fishes,
a
few
of
which
use
gills

for
 suspension
 feeding
 as
well
 as
 respiration.
A
 typical
 teleost
 fi
sh
has

sieving
units
20
micrometers
apart
(Stevens
and
Lightfoot
1986)
with
a

flow
between
their
lamellae
of
about
1
millimeter
per
second
(calculated

from
the
data
of
Hughes
1966).
For
oxygen
transport,
the
resulting
Péclet

number
is
5.5,
not
an
unreasonable
value
for
an
oxygenating
organ.
One

gets
quite
a
different
result
for
a
fish
that
uses
its
gills
for
suspension
feed-
ing.
While
a
somewhat
higher
80
micrometers
separates
adjacent
fi
ltering
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elements,
the
main
difference
is
in
flow
speeds.
Flows
run
around
150
mil-
limeters
per
 second
 for
passive
 (“ram”)
ventilators
 (Cheer
 et
 al.
2001)

and
550
millimeters
per
second
for
pumped
ventilators
(Sanderson
et
al.

1991).
The
resulting
Péclet
numbers,
6,500
and
20,000
(again
using
oxy-
gen
diffusion),
exceed
anything
reasonable
for
respiratory
organs.


Air Movement and Stomatal Exchange 

All
the
previous
cases
looked
at
diffusion
and
convection
in
liquids.
Of

course
the
same
reasoning
should
apply
to
gaseous
systems
as
well—
fl
uids

are
fl
uids,
and
diffusion
and
convection
happen
in
both
phases
of
matter.


Leaves
 lose
or
“transpire”
water
as
vapor
diffuses
out
 though
 their

stomata
and
disperses
into
the
external
air.
Transpiration
rates
depend

on
a
host
of
variables,
among
them
wind
speed
and
stomatal
aperture,

with
this
last
under
physiological
control.
Right
next
to
a
leaf’s
surface,

the
 pro
cess
 depends,
 as
 does
 any
 diffusive
 pro
cess,
 on
 concentration

gradient—
here
from
the
saturated
air
at
the
stomata
to
what
ever
the
en-
vironmental
humidity
might
be.
The
stronger
the
wind,
the
steeper
the

concentration
gradient
as
the
so-
called
boundary
layer
gets
thinner.


Consider
a
bit
of
leaf
20
millimeters
downstream
from
the
leaf’s
upwind

edge.
Assume
a
wind
about
as
low
as
air
appears
to
move
for
any
appre-
ciable
length
of
time,
as
my
slightly
educated
guess,
0.1
meter
per
second.

The
effective
thickness
of
the
velocity
gradient
outward
from
the
leaf’s
sur-
face,
δ,
can
be
calculated
using
the
semi-
empirical
formula
(Vogel
1994b)


xµ = 3 5 ,
 (1.4).

vρ 

where
x
is
the
distance
downstream,
and
µ
and
ρ
are
the
air’s
viscosity

and
density,
respectively,
18×
10−6
pascal-
seconds
and
1.2
kilograms
per

cubic
meter.
The
thickness
comes
to
6
millimeters.
(The
datum
must
be

regarded
as
the
crudest
approximation;
among
other
things,
the
formula

assumes
a
thickness
that
is
much
less
than
the
distance
downstream.)
For

that
 thickness,
 that
 wind
 speed,
 and
 the
 diffusion
 coefficient
 of
 water

vapor
in
air,
0.24×
10−4
meters
squared
per
second,
the
Péclet
number
is

25.
 So
 even
 at
 that
 low
 speed,
wind
 suffices
 to
produce
 a
 convection-

dominated
system.


What
might
that
tell
us?
For
one
thing,
it
implies
that
changes
in
wind

speed
should
have
little
or
no
direct
effect
on
water
loss
by
transpiration.

If
water
loss
does
vary
with
wind
speed,
one
should
look
for
something

other
than
a
direct
physical
effect,
something
such
as
changes
in
stomatal

aperture.
For
another
thing,
it
implies
that
a
leaf
in
nature
won’t
have
ad-
jacent
to
its
surface
very
much
of
a
layer
of
higher-
than-
ambient
humidity.




Two
Ways
to
Move
Material
 •
 13


So-
called
vapor
 caps
are
not
 likely
 to
mean
much
with
 even
 the
most

minimal
of
 environmental
winds.
 It
 also
 rationalizes
observations
 that

changes
in
stomatal
aperture
area
have
considerable
effects
on
transpira-
tion
rates—
vapor
diffuses
through
them,
and
in
an
otherwise
convection-
dominated
pro
cess,
diffusion
becomes
rate-
limiting.


Growth and Development 

Hydrodynamics and Growth 

In
a
multicellular
organism,
developmental
patterns
depend
on
both
ge-
ne
tic
control
and
an
organism’s
environmental
situation,
with
a
diversity

of
feedback
mechanisms
integrating
the
two.
Where
the
environment
ap-
pears
to
rule,
one
may
have
trouble
separating
direct
physical
effects
from

those
mediated
by
active
sensing
and
responses,
linked
by
such
feedback.

But
sometimes
the
value
of
a
Péclet
number
can
argue
the
case
for
direct

action.


A
particularly
nice
illustration
comes
from
work
on
the
accretive
growth

of
stony
corals.
Like
such
other
sessile
animals
as
sponges,
corals
are
sus-
pension
feeders,
gathering
food
over
their
external
surfaces.
The
effective-
ness
of
feeding
depends
on
overall
form,
whether
of
 individuals,
as
 in

sponges,
 or
 of
 colonies,
 as
 in
 corals.
 And
 intraspecific
 form
 depends

strongly
on
the
local
situation—
particularly
on
currents
around
individu-
als
or
colonies.
In
the
stony
corals,
colonies
of
branching
forms
from
qui-
escent
locations
tend
to
have
more
open
branches
with
thinner
and,
even-
tually,
longer
branches.
By
contrast,
colonies
of
a
given
species
subjected

to
higher
average
fl
ows
are
considerably
more
compact
and
spherical.


One
might
expect
the
degree
of
compactness
to
track
the
Reynolds
num-
ber
of
flow
in
the
immediate
habitat.
But
a
series
of
simulations
(Kaandorp

and
Sloot
2001;
Merks
et
al.
2003)
found
that
variation
in
Péclet
number

much
better
describes
what
happens.
So
fl
ow—
advection—relative
to
dif-
fusion,
not
just
flow
per
se,
must
be
important.
One
might
then
wonder

about
the
meaning
of
diffusion
where
the
key
items
are
motile
microor-
ganisms
 such
 as
 unicellular
 algae.
 These
 investigators
 found
 that
 they

could
use
effective
diffusion
coefficients
for
such
ingestibles,
with
values,

figured
from
several
starting
points,
well
above
those
of
even
the
smallest

of
molecules.
For
instance,
the
green
alga
Chlamydomonas,
10
microm-
eters
in
diameter,
has
an
effective
D
of
5×
10 −8
meters
squared
per
sec-
ond,
 and
 a
1-
millimeter
mover,
 a
D
 of
 3.5
×
10 −5.
 So
 it
 looks
 as
 if
 an

analysis
based
on
Péclet
number
has
value
even
under
circumstances
in

which
 the
 variable
 might
 seem
 inapplicable.
 And
 a
 par
tic
u
lar
 abiotic

mechanism
provides
a
sufficient
(if
not
necessarily
complete)
explanation

of
quite
a
lot
of
morphological
variation.
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Another
somewhat
counterintuitive
way
the
mix
of
diffusion
and
con-
vection
affects
growth
has
been
uncovered
in
nonmotile
phytoplankton.

These,
of
course,
move
passively
with
the
surrounding
water,
eliminating

an
obvious
role
for
local
flow.
Moreover,
the
flows
in
which
they’re
em-
bedded
will
be
laminar
rather
than
turbulent,
simply
as
a
matter
of
scale.

The
minimum
size
of
a
turbulent
eddy
depends
on
the
rate
of
energy
dis-
sipation
 in
a
fluid
and
 is
described
by
the
so-
called
Kolmogorov
scale.

For
natural
waters
it
runs
around
1
millimeter,
roughly
the
upper
end
of

the
size
range
of
phytoplankton.
Thus,
they
should
see
little
if
any
of
the

cross-
flow
mixing
concomitant
with
turbulence.
But
the
strong
local
ve-
locity
gradients
that
they
will
experience
will
make
them
rotate
and
even

cause
 such
 detrimental
 things
 as
 cell
 aggregation
 and
 cell
 destruction

(Hondzo
and
Lyn
1999).
The
same
local,
small-
scale
flows
can
still
facili-
tate
growth
by
enhancing
nutrient
uptake—
mainly
when
Péclet
numbers

exceed
unity
(Warnaars
and
Hondzo
2006).


Chemosensory Systems and Yet Other Possible Relevancies 

Where
else
might
calculations
of
Péclet
numbers
provide
useful
insight?

We
 haven’t
 considered,
 for
 instance,
olfactory
 systems,
 either
aerial
or

aquatic—
in
short,
chemosensation
in
moving
fluids.
For
these,
I’ve
found

few
relevant
data.
Several
things
have
come
up
recently
that
suggest
any-
thing
but
the
kind
of
match
between
convection
and
diffusion
that
we’ve

been
treating
as
in
some
way
or
another
optimal.
But
that
mismatch
may

be
instructive.


A
look
at
Mead
(2005)
or
Woodson
et
al.
(2007)
will
provide
a
good

sense
of
what
goes
on,
at
 least
 in
 relevant
aquatic
 systems.
Fishes
most

often
detect
dissolved
odorants
in
a
pair
of
chambers
atop
their
heads,

just
behind
their—
to
use
the
term
fi
guratively—
noses.
By
some
mix
of

active
pumping
and
hydrodynamic
induction,
in
each
water
flows
in
an

anterior
opening
and
out
a
posterior
one.
Cox
(2008)
calculated
Péclet

numbers
between
20
and
3,000,
indicating
severe
biases
toward
convec-
tion.
Decapod
crustaceans
do
chemoreception
with
quite
different
ma-
chinery,
locating
the
receptors
(“aesthetascs”)
on
their
antennules,
fl
ick-
ing
 these
 to
 improve
effective
contact
with
odor-
laden
water.
 (See,
 for

instance,
Mead
and
Weatherby
2002.)
For
crayfish,
Kristina
Mead
(per-
sonal
communication)
calculates
Pé’s
in
the
thousands.


Perhaps
two
factors,
in
combination,
underlie
that
bias.
First,
as
Cox

(2008)
points
out,
the
cost
of
pumping
water
should
be
insignifi
cant
rela-
tive
to
overall
metabolic
rates.
Furthermore,
pumping
ought
to
reduce
the

lag
 time
 between
 encountering
 signal-
carrying
 water
 and
 detecting
 the

chemical
information.
And
whether
looking
for
prey
or
looking
out
for

predators,
response
speed
should
be
accorded
very
high
priority.
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Beyond
chemosensation,
one
wonders
about
yet
other
systems.
Might

we
usefully
consider
the
speeds
and
distances
of
movement
of
auxins
and

other
plant
hormones?
Might
we
learn
anything
by
comparing
systems
in

which
oxygen
diffuses
within
a
moving
gas
with
ones
in
which
it
diffuses

in
a
flowing
liquid?

Here
one
thinks
of
systems
such
as,
on
the
one
hand,

our
alveoli
and
bronchioles
 (see,
 for
 instance,
Federspiel
and
Fredberg

1988),
the
tubular
lungs
of
birds,
and
the
pumped
tracheal
pipes
of
in-
sects
and,
on
the
other,
the
gills
of
fi
sh,
crustaceans,
and
the
like.


The Sizes of Morphoge ne tic Fields and Synaptic Clefts 

A
variation
of
the
Péclet
number
may
provide
insight
into
such
things
as

the
development
of
animals
and
characteristic
biological
times.
Much
of

pattern
formation
depends
on
the
diffusion
of
substances,
morphogens,

whose
 concentration
 gradients
 establish
 embryonic
 fi
elds.
 Establishing

larger
fields
not
only
means
lower
gradients
(or
takes
higher
concentra-
tions
of
morphogens)
but
 (for
a
given
concentration)
would
 take
more

time,
a
non-
negligible
resource
in
a
competitive
world.
Breaking
up
veloc-
ity
into
length
over
time
we
get:


l2


.
 (1.5)

Dt 

(The
reciprocal
of
this
expression
is
sometimes
called
the
mass
transfer

Fourier
number.)


To
 define
 the
 limits
 of
 excessively
 diffusion-
dependent
 systems,
 we

might
assume
a
value
of
1.
A
typical
morphogen
has
a
molecular
weight

of
1000;
its
diffusion
coefficient
when
moving
through
cells
(a
little
lower

than
through
water)
ought
to
be
around
1
×
10−10
meters
squared
per
sec-
ond.
A
reasonable
time
for
embryonic
pro
cesses
should
be
a
few
hours,

say
104
 seconds.
The
numbers
and
 the
 equation
 imply
 that
 embryonic

fields
should
be
around
1
millimeter
across,
about
what
we
find.
I
think

this
basis
for
the
embryonic
field
size
(although
put
somewhat
differently)

was
fi
rst
argued
by
Crick
(1970).


In
effect,
the
calculation
produces
what
we
might
consider
a
character-
istic
time
for
a
diffusive
pro
cess.
Consider
ordinary
synaptic
transmission

in
a
ner
vous
 system.
The
most
common
 transmitter
 substance,
acetyl-
choline,
has
a
molecular
weight
of
146
and
a
diffusion
coeffi
cient
around

7×
10−10
meters
squared
per
second.
With
a
synaptic
cleft
of
20
nanome-
ters,
the
corresponding
time
comes
to
0.6
milliseconds.
That
value
matches

cited
values
for
overall
synaptic
delay,
between
about
0.5
and
2.0
milli-
seconds,
consistent
with
the
textbook
attribution
of
much
of
the
delay
to

transmitter
diffusion.
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That Diffusion Coeffi cient 

So
far,
values
of
the
diffusion
coefficient
have
materialized
ex
cathedra.

In
practice,
one
obtains
them
just
that
way—
by
appeal
to
higher
author-
ity
or
whoever
bequeaths
us
the
appropriate
tables.
That
larger
molecules

have
lower
coefficients
needs
no
further
emphasis;
it
does
tacitly
antici-
pate
some
proper
formula.
No
such
luck,
at
least
for
ordinarily
reliable

predictions,
 but
 quantitative
 guidance
 isn’t
 completely
 lacking.
 Uncer-
tainty
comes
from
the
dependence
of
diffusion
coefficients
(and
mean
free

paths
of
molecules,
on
which
they
directly
depend)
on
molecular
shape,

no
easy
thing
to
specify.
The
following
formula
gives
a
rough
sense
of

how
the
coefficient
varies
with
molecular
(here
as
molar)
mass,
assuming

that
the
diffusing
molecules
are
spherical,
 that
the
solution
is
quite
di-
lute,
and
that
some
other
conditions
hold:


KT KT 4πρN
D == 3
 .
 (1.6)


6πµr 6πµ 3m 

Here
K
is
the
Boltzmann
constant,
T
the
Kelvin
temperature,
μ
the
viscos-
ity
of
the
solvent,
r
the
molecular
radius,
ρ
the
density
of
the
solute
mate-
rial,
N
Avogadro’s
number,
and
m
the
molecular
weight
of
the
solute.


Put
as
a
rule
of
thumb,
the
diffusion
coefficient
varies
inversely
with

the
cube
root
of
the
molecular
weight
of
the
diffusing
substance.
In
prac-
tice
we
get
our
diffusion
 coefficients
 from
empirical
mea
sure
ment
and

thence,
by
inference,
some
idea
of
molecular
shape.
Incidentally,
diffu-
sion
coefficients
for
transport
through
living
material
such
as
muscle
and

connective
tissue
are
anomalously
low
(Schmidt-
Nielsen
1997).


In
fields
such
as
fluid
mechanics
and
chemical
engineering,
dimensionless

numbers
are
pervasive
and
of
proven
utility.
Biologists
have
been
slow
to

exploit
them
as
tools,
perhaps
because
our
initial
or
sole
contacts
with

physical
science
have
been
with
physicists,
who
use
them
only
rarely.
Or

perhaps
 because
 we’ve
 for
 so
 long
 focused
 on
 scaling
 relationships,

with
their
irregular
and
ambiguous
dimensions.
Dimensionless
numbers

will
turn
up
again
and
again
in
the
chapters
that
follow,
in
part
as
my

argument-
by-
example
(as
briefly
in
Vogel
1998)
that
they
can
help
us
see

the
relevance
of
physical
phenomena
to
biological
systems.
Some,
such
as

the
present
Péclet
number,
have
been
bequeathed
to
us
by
engineers
(here

mainly
chemical
engineers),
and
we
needn’t
even
redefine
the
variables.

Others
(the
Froude
number,
for
instance,
which
will
appear
in
chapters

6
 and
7)
 have
 traditional
 applications
 in
 engineering
 that
we
 can,
 by

such
redefinition,
put
to
quite
different
uses.
We
can
generate
still
other
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dimensionless
 ratios
without
great
 formality,
bearing
 in
mind
 that
 the

ultimate—
indeed,
 the
 only
 relevant—
test
 is
 whether
 the
 number
 gives

some
useful
 insight,
 perhaps
permitting
us
 to
discern
 general
 relation-
ships
that
would
otherwise
remain
obscure.


Dimensionless
 numbers
 provide
 tools
 that,
 for
 the
 most
 part,
 tell
 us

what
matters.
Is
a
fl
ow
going
to
be
laminar
or
turbulent?
At
a
given
speed

will
an
animal
of
a
certain
size
find
it
easier
to
walk
or
run?
Or,
as

here,

will
 convective
or
diffusive
pro
cesses
prove
predominant,
 so
one
or
 the

other
can
be
ignored,
or
does
one’s
system
appear
designed
to
take
best

advantage
 of
 each?
 These
 chapters
 will
 argue
 (again
 by
 example)
 that

these
 ratios
 prove
 especially
 useful
 where
 systems
 encompass
 wide
 size

ranges.
In
par
tic
u
lar,
by
not
having
any
apparent
or
concealed
length
di-
mension,
they
can
avoid
contamination
of
comparative
numbers
with
the

confusing
effects
of
size
per
se.


Finally,
who
was
this
person
Péclet?
One
does
not
normally
name
a

number
after
oneself.
Someone
may
propose
a
dimensionless
index,
and

then
the
next
person
who
uses
it
names
it
after
the
fi
rst.
Or

else
its
origi-
nator
may
name
it
for
some
notable
scientist
who
worked
in
the
same

general
area.
Péclet
number
is
a
case
of
the
latter.
Jean
Claude
Eugène

Péclet
(1793–
1857)
was
part
of
the
flowering
of
French
science
just
after

the
revolution.
He
was
a
student
of
the
physical
chemists
(as
we
would

now
call
them)
Gay-
Lussac
and
Dulong—
names
yet
remembered
for
their

laws—
and
a
teacher
of
physical
science.
He
did
noteworthy
experimental

work
on
 thermal
problems
and
wrote
an
 infl
uential
book,
Treatise on 
Heat and its Applications to Crafts and Industries
(Paris
1829).


Putting
his
name
on
a
dimensionless
number
happened
a
century
later,

by
Heinrich
Gröber,
in
1921,
in
another
important
book,
Fundamental 
Laws of Heat Conduction and Heat Transfer.
That
thermal
version
of

the
Péclet
number
antedates
the
mass-
transfer
version
used

here.
The
lat-
ter,
as
far
as
I
can
determine,
first
appears
in
a
paper
on
flow
and
diffu-
sion
through
packed
solid
particles,
by
Bernard
and
Wilhelm,
 in
1950.

They
note
its
similarity
to
the
dimensionless
number
used
in
heat-
transfer

work
and
call
 their
version
a
“modified
Peclet
group,
 symbolized
Pe’
”.

They
shift,
confusingly
and
deplorably,
from
an
acute
accent
in
“Péclet”

to
a
prime
(’),
now
usually
omitted,
at
the
end.
Analogous
indices
for
ther-
mal
and
material
pro
cesses
are
not
unusual
since
the
underlying
transport

pro
cesses
are
either
 the
same
(as
convection)
or
analogous
 (as
diffusion

and
conduction).
But
most
often
the
two
carry
different
names—
such
as

Prandtl
number
and
(as
earlier)
Schmidt
number.
Amusingly,
most
sources

mention
one
of
 the
versions
of
 the
Péclet
number
with
no
ac
know
ledg-
ment
that
there
is
any
other.





