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Chapter One

The fixed point formula

1.1 SHIMURA VARIETIES

The reference for this section is [P2] §3.

Let S = Rc/rGur. ldentify S(C) = (C ®@r C)* and C* x C* using the
morphisma ® 1 + b ® i —> (a + ib,a — ib), and write po : G, c — Sc
for the morphism z — (z, 1).

The definition of (pure) Shimura data that will be used here is that of [P2] (3.1),
up to condition (3.1.4). So a pure Shimura datum is a triple (G, X, ) (that will
often be written simply (G, X)), where G is a connected reductive linear alge-
braic group over Q, X is a set with a transitive action of G(R) and 2 : X —>
Hom(S, Gg) is a G(R)-equivariant morphism, satisfying conditions (3.1.1), (3.1.2),
(3.1.3), and (3.1.5) of [P2], but not necessarily condition (3.1.4) (i.e., the group G
may have a simple factor of compact type defined over Q).

Let (G, X, h) be a Shimura datum. The field of definition F of the conjugacy
class of cocharacters 7, o g : G,,.c —> Gg¢, x € X, is called the reflex field of the
datum. If K is an open compact subgroup of G(A y), there is an associated Shimura
variety MX(G, X), which is a quasi-projective algebraic variety over F satisfying

MG, X)(©) = G(@) \ (X x G(A)/K).
If moreover K is neat (cf. [P1] 0.6), then MK (G, X) is smooth over F. Let M(G, X)
be the inverse limit of the MK (G, X), taken over the set of open compact subgroups
K of G(A/r)

Let g, g € G(A ), and let K, K’ be open compact subgroups of G(A ;) such that

K’ c gKg™L. Then there is a finite morphism
T, : M<(G, X) — MX(G, X),
which is given on complex points by
{G(Q)\(X xGA)/K) — G\ (X x G(A))/K),
G, hK) —  G@)(x, hgK).
If K is neat, then the morphism 7, is étale.

Fix K. The Shimura variety MX(G, X) is not projective over F in general,
but it has a compactification j : MX(G, X) — MX(G, X)*, the Satake-Baily-
Borel (or Baily-Borel, or minimal Satake, or minimal) compactification, such that
MX(G, X)* is a normal projective variety over F and MX(G, X) is open dense in
MX (G, X)*. Note that MK(G, X)* is not smooth in general (even when K is neat).
The set of complex points of MK(G, X)* is

MG, X)*(C) = G(Q) \ (X* x G(A,)/K),
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where X'* is a topological space having X as an open dense subset and such that the
G(Q)-action on X extends to a continuous G(Q)-action on X'*. As a set, X* is the
disjoint union of X and of boundary components X'p indexed by the set of admis-
sible parabolic subgroups of G (a parabolic subgroup of G is called admissible if it
is not equal to G and if its image in every simple factor G’ of G¥ is equal to G’ or
to a maximal parabolic subgroup of G/, cf. [P1] 4.5). If P is an admissible parabolic
subgroup of G, then P(Q) = Stabgqg)(Xp); the P(Q)-action on Xp extends to a
transitive P(IR)-action, and the unipotent radical of P acts trivially on X'p.

For every g, K, K’ as above, there is a finite morphism 7, : M¥ (G, X)* —
MX(G, X)* extending the morphism 7.

From now on, we will assume that G satisfies the following condition. Let P be
an admissible parabolic subgroup of G, N » be its unipotent radical, U p the center of
Np,and Mp = P/Np the Levi quotient. Then there exist two connected reductive
subgroups L p and G p of M p such that

e My is the direct product of L » and Gp;

e Gp contains G;, where G; is the normal subgroup of Mp defined by Pink in
[P2] (3.6), and the quotient Gp/G1Z (G p) is R-anisotropic;

e Lp CCenty,(Up) C Z(Mp)Lp;

® Gp(R) acts transitively on X'p, and L p(R) acts trivially on X’p;

e for every neat open compact subgroup Ky, of Mp(A ), Ky NLp(Q) = Ky N
CentMP(Q) (Xp).

Denote by Qp the inverse image of Gp in P.

Remark 1.1.1 If G satisfies this condition, then, for every admissible parabolic
subgroup P of G, the group G p satisfies the same condition.

Example 1.1.2 Any interior form of the general symplectic group GSp,, or of the
quasi-split unitary group GU* () defined in section 2.1 satisfies the condition.

The boundary of MX(G, X)* has a natural stratification (this stratification exists
in general, but its description is a little simpler when G satisfies the above condi-
tion). Let P be an admissible parabolic subgroup of G. Pink has defined a morphism
Xp —> Hom(S, Gpr) ([P2] (3.6.1)) such that (Gp, Xp) is a Shimura datum and
the reflex field of (Gp, Xp) is F. Let ge G(Ay). LetHp = gKg™n P(QQp(A)),
Ho = gKg" N Lp(Q@Np(A)), Ko = gKg ' N Qp(Ay), and Ky = gKg ' N
Np(A ;). Then (cf. [P2] (3.7)) there is a morphism, finite over its image,

MKQ/KN(GPv XP) N MK(G, X)* — MK(G, X).

The group H p acts on the right on AXe/Kv (G, X'p), and this action factors through
the finite group Hp/H; K. Denote by i » , the locally closed immersion

M e (Gp, Xp)/Hp —> MN(G, X)".
This immersion extends to a finite morphism

ipg: MX/KY(Gp, Xp)*/Hp — MN(G, X)*
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(this morphism is not a closed immersion in general). The boundary of MX(G, Xx)*
is the union of the images of the morphisms ip ., for P an admissible parabolic
subgroup of G and g € G(A ). If P" is another admissible parabolic subgroup of
G and g’ € G(A ), then the images of the immersions ip , and ip o are equal if
and only if there exists y € G(Q) such that P’ = yPy ! and P(Q)QrAgK =
P(QQpr(A )y tgK; if there is no such y, then these images are disjoint. If K is
neat, then Ky /Ky is also neat and the action of Hp/H; Ky on MKe/K¥(Gp, Xp)
is free (so MXe/%¥(Gp, Xp)/Hp is smooth).

The images of the morphisms ip,, g € G(Ay), are the boundary strata of
MK(G, X)* associated to P.

To simplify notation, assume from now on that G is simple. Fix a minimal
parabolic subgroup Py of G. A parabolic subgroup of G is called standard if it
contains Py. Let P4, ..., P, be the maximal standard parabolic subgroups of G,
with the numbering satisfying » < s ifand only if Up, C Up, (cf. [GHM] (22.3)).
Write N, = Np’,, G, = Gp,_, L, = LP’_, l.,ﬂ,g = l'phg, etc.

Let P be a standard parabolic subgroup of G. Write P = P,, N --- N P,,, with
ni < --- < n,. The Levi quotient Mp = P/Np is the direct product of G,, and of
a Levi subgroup Lp of L,,,. Let Cp be the set of n-uples (Xi, ..., X,), where

e X is a boundary stratum of M*(G, X)* associated to P,,,;
e foreveryi € {1,...,r — 1}, X;,1 is a boundary stratum of X; associated to
the maximal parabolic subgroup (P,,,, N Qx,)/N,, of G,,.

Let C}, be the quotient of G(A ;) x Q,, (As) x --- x Q,,_, (A ) by the following
equivalence relation: (g1, ..., g-) is equivalent to (g, ..., g if and only if, for
everyi e {l,...,r},

(Pn1 n---N Pn,)(@)Qni (Af)gl cee glK = (Pn1 n---N Pn,-)(Q)Qn,- (A/’)gl/ e g;_K

Proposition 1.1.3 (i) The map G(A;) — C}, that sends g to the class of
(g,1,...,1) induces a bijection P(Q)Q,, (A ;) \ G(A ;)/K — C}.
(i) Define a map ¢’ : C5 —> Cp in the following way. Let (g1,...,g) €
GAf) x Qu(Ap) x---xQ,,_,(Ay). Foreveryi e {1,...,r}, write

Hi=(g...g0K(g...e) ' NP, N---NP.QQ, (A)),

and let K; be the image of H; N Q,, (A ) by the obvious morphism Q,, (A y)
—> G,,(Ay). Then ¢’ sends the class of (g1,...,g) to the n-tuple
(X1,..., X)), where X1 = Im(i,, ) = MKi(Gnl, X,,)/H1 and, for every
i €{1,...,r =1}, X;44 is the boundary stratum of X; = M*%(G,,, X,,)/H;
image of the morphism i p 4, with P" = (P,,,,NQ,,)/N,, (a maximal parabolic
subgroup of G,,,) and g = gi11N,,, (A ) € G, (A ).

Then this map CL — Cp is well defined and bijective.

The proposition gives a bijection ¢p : P(Q)Q,, (A )\ G(A/)/K —5 Cp.Onthe
other hand, there is a map from C to the set of boundary strata of MK (G, X')* asso-
ciated to P, , defined by sending (X1, ..., X,) to the image of X, in MK(G, X)*.
After identifying Cp to P(Q)Q,, (A /) \ G(A,)/K using ¢p and the second set to
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P, (Q)Q,, (A \ G(Ay)/Kusing g — Im(i,, ), this map becomes the obvious
projection P(Q)Q,, (A ) \ G(A)/K —> P, (Q)Q,, (As) \ G(Af)/K.

Proof.

(i)

(ii)

AsQ, CQ,_, C - C Q,, itiseasy to see that, in the definition of C3,
(g1, ..., &) isequivalentto (g, ..., g) ifand only if

(Pn1 n---N Pn,)(@)Qn, (Af)gr cee glK
The result now follows from the fact that P = P,, N---NP,,,.
We first check that ¢’ is well defined. Leti € {1,...,r — 1}. If X; =
MKi(G,,, X,)/H; and X;,, is the boundary stratum Im(ip o) of X;, with
P’ and g as in the proposition, then X;.1 = MX(G,,,,, &,,.,)/H’, where
H = gir1Hig i NP (QQ,,., (A f) and K is the image of H'NQ,,, (A ;)
in an+1 (Af) As g1 € an (Af)’

H = (gis1... g)K(git1...g) "N (P, N---NP,)QQ,, (Ay)
mPnH.l (Q)Qni+1 (A])

On the other hand, it is easy to see that
(Pnl n---N Pn,-)(Q)Qn; (Af) N Pn,url (Q)Qniﬂ (Af)
=Pu, N NPy ) QQu,,, (Ay).

Hence H' = H;yq1, and X;y1 = MK4(G,,,,, X,,.,)/His1. It is also clear
that the n-tuple (X1, ..., X,) defined in the proposition does not change if
(g1, ..., &) isreplaced by an equivalent »-tuple.

It is clear that ¢’ is surjective. We want to show that it is injective. Let
e, € CL;write (X1,...,X,) = ¢'(c) and (X}, ..., X)) = ¢'(¢)), and
suppose that (X1, ..., X;) = (X3, ..., X)). Fix representatives (g1, . .., g)
and (gg, ..., g,) of cand ¢'. As before, write, forevery i € {1, ..., n},

Hi=(g...g0K(g...2) " NPy N---NPQQ, (A ),

H = (g ... gDK(g...g) " NPy, N+ NP, )QQ,, (A ).
Then the equality X;=X; implies that P, (Q)Q, ApgK
P, (QQ. (A g Kand, forevery i € {1,...,r — 1}, the equality X;.1 =
X, implies that
P (QQus (A ) giiHi(gi - g1) = Puy (Q)Quy (A g Higr - - 81)-
So (g1,...,g)and (g, ..., g) areequivalent,and ¢ = ¢’. O

1.2 LOCAL SYSTEMS AND PINK’S THEOREM

Fix a number field K. If G is a linear algebraic group over Q, let Repg be the
category of algebraic representations of G defined over K. Fix a prime number ¢
and a place X of K over £.
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Let M be a connected reductive group over Q, L and G connected reductive
subgroups of M such that M is the direct product of L and G, and (G, X’) a Shimura
datum. Extend the G(A ,)-action on M (G, &) to an M(A ,)-action by the obvious
map M(A 1) — G(Ay) (so L(A ) acts trivially). Let K,, be a neat open compact
subgroup of M(A ). Write H = Ky, N L(Q)G(A f), H, = Ky, N L(Q) (an arith-
metic subgroup of L(Q)), and K = K;; NG(A /). The group H acts on the Shimura
variety MX(G, X), and the quotient X (G, X)/H is equal to M"/H: (G, x) (H/H,
is a neat open compact subgroup of G(A f)).

Remark 1.2.1 It is possible to generalize the morphisms 7, of section 1.1: If
m € L(Q)G(A,) and K/, is an open compact subgroup of M(A /) such that
Ky, NL@QGA,) C mHm ™1, then there is a morphism

Ty : MG, X)/H — M(G, X)/H,
where H = K|, N L(QG(Af) and H = Ky, N L(Q)G(A f). This morphism is
simply the one induced by the injection H' — H, h — mhm ! (equivalently, it
is induced by the endomorphism x — xm of M(G, X)).

There is an additive triangulated functor ¥ — FHH.RI(H,, V) from
the category D’(Rep,,) to the category of A-adic complexes on M¥(G, x)/H,!
constructed using the functors ur , of Pink (cf. [P1] (1.10)) for the profinite étale
(and Galois of group H/H;) covering M(G, X) — MX(G, X)/H and the prop-
erties of the arithmetic subgroups of L(Q). This construction is explained in [M1]
2.1.4. For every V e Ob D’(Repyy) and k € Z, H* FHVHRT(H,, V) is a lisse
A-adic sheaf on MK(G, X)/H, whose fiber is (noncanonically) isomorphic to

P HHLHP).

i+j=k

Remark 1.2.2 If I is a neat arithmetic subgroup of L(Q) (e.g., ' = H;), then itis
possible to compute RT'(T", 7) in the category D?(Repg), because T is of type FL
(cf. [BuW], theorem 3.14).

We will now state a theorem of Pink about the direct image of the complexes
FHHLRT(H., V) by the open immersion j : MKX(G, X)/H — MK(G, X)*/H.
Let P be an admissible parabolic subgroup of G and g € G(A 7). Write

Hp = gHg " N LQP@QQr(A ),
Hp. =gHg " NLQLA(QNp(A ),
Ky = gHg ' NNp(A ),
Ko = (gHg ™" N Qr(A/)/(gHg ' NNp(A ),

andi =ipgy: M¥(Gp, Xp)/Hp — MK(G, X)*/H.
Then theorem 4.2.1 of [P2] implies the following result (cf. [M1] 2.2).

THere, and in the rest of the book, the notation RT" will be used to denote the right derived functor of
the functor H.
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Theorem 1.2.3 For every V' € Ob D”(Rep,,), there are canonical isomorphisms
i*Rj, FYVHRT (Hy, V)~ FHr/Hri RO (Hp 1, V)
~ FHr/MeL RO (Hp 1 /Ky, RT(Lie(Np), V).

The last isomorphism uses van Est’s theorem, as stated (and proved) in
[GHM] 24.

We will also use local systems on locally symmetric spaces that are not neces-
sarily hermitian. We will need the following notation. Let G be a connected reduc-
tive group over Q. Fix a maximal compact subgroup K., of G(R). Let Ag be the
maximal (Q-)split torus of the center of G, X = G(R)/KsAg(R)? and ¢(G) =
dim(X)/2 € 1Z. Write

MX(G, X)(C) = G(Q) \ (X x G(A)/K)

(even though (G, X) is not a Shimura datum in general, and MK(G, X)(C) is not
always the set of complex points of an algebraic variety). If K is small enough (e.g.,
neat), this quotient is a real analytic variety. There are morphisms 7, (g € G(A f))
defined exactly as in section 1.1.

Let V' € ObRepg. Let FXV be the sheaf of local sections of the morphism

G\ (VN x X x G(Ay)/K) — G(Q) \ (X x G(A)/K)

(where G(Q) actson V' x X x G(A y)/K by (v, (v, x, gK)) — (y.v, y.x, ygK)).
As suggested by the notation, there is a connection between this sheaf and the local
systems defined above: if (G, X) is a Shimura datum, then FXV ® K, is the inverse
image on MX(G, X)(C) of the r-adic sheaf XV on M¥(G, X) (cf. [L1], p. 38 or
[M1] 2.1.4.1).

Let I" be a neat arithmetic subgroup of G(Q). Then the quotient I" \ X is a real
analytic variety. For every V' € ObRepg, let FI' V' be the sheaf of local sections of
the morphism

T\(V xX) — T\ X

(where " actson V' x X by (y, (v, x)) —> (y.v, y.X)).

Let K be a neat open compact subgroup of G(A /), and let (g;);c; be a system
of representatives of the double quotient G(Q) \ G(A s)/K. For every i € I, let
=g Kgi_l N G(Q). Then the I'; are neat arithmetic subgroups of G(Q),

MKG. X)(©) =] ]\ X,
iel
and, for every V' € ObRepg,
Fry = Fhy.

iel

1.3 INTEGRAL MODELS

Notation is as in section 1.1. Let (G, X’) be a Shimura datum such that G is simple
and that the maximal parabolic subgroups of G satisfy the condition of section 1.1.
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The goal here is to show that there exist integral models (i.e., models over a suitable
localization of Of) of the varieties and sheaves of sections 1.1 and 1.2 such that
Pink’s theorem is still true. The exact conditions that we want these models to
satisfy are given more precisely below (conditions (1)-(7)).

Fix a minimal parabolic subgroup Py of G, and let (G, A1), ..., (G,, X,) be the
Shimura data associated to the standard maximal parabolic subgroups of G. We will
also write (G, Xp) = (G, X). Note that, for every i € {0, ..., n}, Py determines
a minimal parabolic subgroup of G;. It is clear that, for every i € {0, ..., n}, the
Shimura data associated to the standard maximal parabolic subgroups of G; are the

Remember that F is the reflex field of (G, X). It is also the reflex field of all the
(Gi, X)) ([P1] 12.1 and 11.2(c)). Let Q be the algebraic closure of Q in C; as F is
by definition a subfield of C, it is included in Q. For every prime number p, fix an
algebraic closure @p of Q, and an injection F C @p.

Fix a point xo of X, and let 4 : S —> Gpg be the morphism corresponding
to xo. Let w be the composition of 4o and of the injection G,, g C S. Then w is
independent of the choice of /g, and it is defined over Q (cf. [P2] 5.4). An algebraic
representation p : G — GL(V) of G is said to be pure of weight m if p o w is
the multiplication by the character A — A" of G,, (note that the sign convention
here is not the same as in [P2] 5.4).

Consider the following data:

e foreveryi € {0,...,n}, aset C; of neat open compact subgroups of G; (A /),
stable by G(A r)-conjugacy;

e foreveryi € {0,...,n}, asubset 4; of G;(A,) suchthatl e 4;;

o forevery i € {0,...,n}, a full abelian subcategory R; of Repg , stable by
taking direct factors.

These data should satisfy the following conditions. Let i, j € {0, ..., n} be such
that j > i and K € K;. Let P be the standard maximal parabolic subgroup of G;
associated to (G, &).

Then

(a) Forevery g e G;(Aj),

(gKg™ NQp(A)))/(gKg ™ NNp(A)) € K},

and, for every g € G;(A ;) and every standard parabolic subgroup P’ of G;
suchthat Qp C P’ C P,

(gKg ' NP QNp(APQp(A )/ (gKg ™ NLp(@QNp(A)) € K,
(gKg ™ NP (A )/ (gKg ™ NLp(A)Np(Af) € K;.

(b) Let g € 4, and K’ € K; be such that K' C gKg™*. Let h € P(Q)Qp(A /) \
G(Ay)/Kand 2 eP(Q)Qp (A )\G(A r) /K be such that P(Q)Qp (A y)hK =
P(@QQp(A,)h'gK. Then there exist p € Lp(Q) and g € Qp(A /) such that
pghK = h’gKand the image of ¢ in G;(A ;) = Qp(As)/Np(Ay)isin 4;.
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(c) Forevery ge G;(Ay)andV € ObR,,
RT(T', RT'(Lie(Np), V)) € Ob Db(Rj),
where
I = (gKg ™ NP@Qr(A)))/(gKg™ N Qp(A)).
Let X be a finite set of prime numbers such that the groups G, ..., G, are

unramified outside X. For every p ¢ %, fix Z,-models of these groups such that
the group of Z ,-points is hyperspecial. Let

Fix ¢

on X

()

O]

@)

4)

®)

(6)

™

As =[] Q,.

peEX

€ ¥ and a place A of K above ¢, and consider the following conditions

Foreveryi € {0,...,n}, 4; C G;(Ax) and every G(A y)-conjugacy class
in /C; has a representative of the form Ky K*, with Ky, ¢ G;(Ay) and K* =
Hp¢)3 Gi(Zp)-

Foreveryi € {0,...,n}and K € K;, there exists a smooth quasi-projective

scheme MNK(G;, &;) over Spec(Or[1/X]) whose generic fiber is
MX(G;, X).

Foreveryi € {0, ..., n}and K € K;, there exists a normal scheme MX(G;,
X;)*, projective over Spec(Or[1/%]), containing MK(G;, X;) as a
dense open subscheme and with generic fiber MK(G;, X;)*. Moreover, the
morphisms ip . (resp., i p o) Of section 1.1 extend to locally closed immer-
sions (resp., finite morphisms) between the models over Spec(Or[1/ X)),
and the boundary of MK(G;, X))* — MX(G;, &;) is still the disjoint union
of the images of the immersions i p 4.

Foreveryi € {0,...,n}, g € 4; and K, K’ € K; such that K’ ¢ gKg™t,
the morphism 7, : MK (G;, X)* — MX(G;, X;)* extends to a finite
morphism MK (G;, x,)* — MX(G;, &;))*, which will still be denoted
by Tg, whose restriction to the strata of M*'(G;, X;)* (including the open
stratum MK (G;, &})) is étale.

Forevery i € {0,...,n}and K e K;, there exists a functor FK from R; to
the category of lisse A-adic sheaves on MX(G;, &;) that, after passing to the
special fiber, is isomorphic to the functor X of section 1.2.

Foreveryi € {0,...,n}, K € K;, and VV € ObR;, the isomorphisms of
Pink’s theorem (1.2.3) extend to isomorphisms between A-adic complexes
on the Spec(Or[1/ Z])-models.

Foreveryi € {0,...,n}, K € K; and ¥V € ObR,, the sheaf FXV on
MK(G;, &) is mixed ([D2] 1.2.2). If moreover ¥ is pure of weight m, then
FKV is pure of weight —m.

The fact that suitable integral models exist for PEL Shimura varieties has been
proved by Kai-Wen Lan, who constructed the toroidal and minimal compactifica-
tions of the integral models.
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Proposition 1.3.1 Suppose that the Shimura datum (G, X) is of the type consid-
ered in [K11] 8§5; more precisely, we suppose fixed data as in [Lan] 1.2. Let be
a finite set of prime numbers that contains all bad primes (in the sense of [Lan]
1.4.1.1). For every i € {0,...,n}, let 4; = G;(A ), let KC; be the union of the
G, (A y)-conjugacy classes of neat open compact subgroups of the form K K with
K c e G(Z,)andK = < Gi(Z,),and let R; = Repg,.

Then the set satisfies conditions (1)—(7), and moreover the schemes
MK(G;, &) of (2) are the schemes representing the moduli problem of [Lan] 1.4.

Proof. This is just putting together Lan’s and Pink’s results. Condition (1) is auto-
matic. Condition (2) (in the more precise form given in the proposition) is a conse-
quence of theorem 1.4.1.12 of [Lan]. Conditions (3) and (4) are implied by theorem
7.2.4.1 and proposition 7.2.5.1 of [Lan]. The construction of the sheaves in condi-
tion (5) is the same as in [P2] 5.1, once the integral models of condition (2) are
known to exist. In [P2] 4.9, Pink observed that the proof of his theorem extends to
integral models if toroidal compactifications and a minimal compactification of the
integral model satisfying the properties of section 3 of [P2] have been constructed.
This has been done by Lan (see, in addition to the results cited above, theorem
6.4.1.1 and propositions 6.4.2.3, 6.4.2.9 and 6.4.3.4 of [Lan]), so condition (6) is
also satisfied. In the PEL case, G* is automatically of abelian type in the sense of
[P2] 5.6.2 (cf. [K11] 85). So G?d is of abelian type for all i, and condition (7) is
implied by proposition 5.6.2 in [P2]. O

Remark 1.3.2 Let (G, X)) be one of the Shimura data defined in 2.1, and let K be
a neat open compact subgroup of G(A ;). Then there exists a finite set S of primes
such that K = Kg pes G(Zp), withKsg C ¢ G(Q,) (and with the Z-structure
on G defined in remark 2.1.1). Let  be the union of S and of all prime numbers
that are ramified in E£. Then contains all bad primes, so proposition 1.3.1 above
applies to

Remark 1.3.3 The convention we use here for the action of the Galois group on the
canonical model is that of Pink ([P2] 5.5), which is different from the convention
of Deligne (in [D1]) and hence also from the convention of Kottwitz (in [K11]);
so what Kottwitz calls canonical model of the Shimura variety associated to the
Shimura datum (G, X, A=) is here the canonical model of the Shimura variety
associated to the Shimura datum (G, X, 4).

Let us indicate another way to find integral models when the Shimura datum is
not necessarily PEL. The problem with this approach is that the set  of “bad”
primes is unknown.

Proposition 1.3.4 Let KC; and A4; be as above (and satisfying conditions (a) and
(b)). Suppose that, for every i € {0, ..., n}, K; is finite modulo G; (A )-conjugacy
and 4; is finite. If G2 is of abelian type (in the sense of [P2] 5.6.2), then there exists
afinite set  of prime numbers satisfying conditions (1)—(7), with R; = Repg, for
everyi € {0,...,n}.
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In general, there exists a finite set  of prime numbers satisfying conditions (1)—
(6), with R; = Repg, foreveryi € {0, ..., n}. Let R;, 0 < i < n, be full subcate-
gories of Repg , stable by taking direct factors and by isomorphism, containing the
trivial representation, satisfying condition (c) and minimal for all these properties
(this determines the R?). Then there exists ' >  finite such that ' and the R’
satisfy condition (7).

This proposition will typically be applied to the following situation: g € G(A 1)
and K, K’ are neat open compact subgroups of G(A ;) such that K’ ¢ K n gKg™2,
and we want to study the Hecke correspondence (7, T1) : MX(G, X)) —
(MX(G, X)*)2. In order to reduce this situation modulo p, choose sets K; such
that K, K’ € Ko and condition (a) is satisfied, and minimal for these properties, sets
A; suchthat 1, g € 4o and condition (b) is satisfied, and minimal for these proper-
ties; take R; = Repg, if G is of abelian type and R; equal to the R, defined in
the proposition in the other cases; fix  such that conditions (1)—(7) are satisfied,
and reduce modulo p €

Proof. First we show that, in the general case, there is a finite set  of prime
numbers satisfying conditions (1)-(6), with R; = Repg . It is obviously possible
to find satisfying conditions (1)—(4). Proposition 3.6 of [W] implies that we can
find  satisfying conditions (1)—(5). To show that there exists  satisfying condi-
tions (1)—(6), reason as in the proof of proposition 3.7 of [W], using the generic
base change theorem of Deligne (cf. SGA 4 1/2 [Th. finitude] théoréme 1.9). As in
the proof of proposition 1.3.1, if G¥ is of abelian type, then condition (7) is true
by proposition 5.6.2 of [P2]. In the general case, let R} be defined as in the state-
ment of the proposition. Condition (7) for these subcategories is a consequence of
proposition 5.6.1 of [P2] (reason as in the second proof of [P2] 5.6.6). |

Remark 1.3.5 Note that it is clear from the proof that, after replacing by a bigger
finite set, we can choose the integral models MK (G;, &;) to be any integral models
specified before (as long as they satisfy the conditions of (2)).

When we later talk about reducing Shimura varieties modulo p, we will always
implicitly fix  as in proposition 1.3.1 (or proposition 1.3.4) and take p € . The
prime number ¢ will be chosen among elements of  (or added to ).

1.4 WEIGHTED COHOMOLOGY COMPLEXES AND INTERSECTION
COMPLEX

Let (G, X') be a Shimura datum and K be a neat open compact subgroup of G(A /).
Assume that G satisfies the conditions of section 1.1 and that G® is simple. Fix
a minimal parabolic subgroup Py of G and maximal standard parabolic subgroups
Pi, ..., P, as before proposition 1.1.3. Fix prime numbers p and £ as at the end of
section 1.3, and a place A of K above £. In this section, we will write MK(G, X),
etc. for the reduction modulo p of the varieties of 1.1.

Write My = MK(G, X) and d = dim My, and, for every r € {1,...,n},
denote by M, the union of the boundary strata of M*(G, X)* associated to P,,
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by d, the dimension of M, and by i, the inclusion of M, in MX(G, X)*. Then
(Mo, ..., M,) is a stratification of MK(G, X)* in the sense of [M2] 3.3.1. Hence,
for every a = (ao, ..., a,) € (Z U {£o0})"*1, the functors w-, and w-, of [M2]
3.3.2 are defined (on the category D2 (M*(G, X)*, K;) of mixed A-adic complexes
on MX(G, X)*). We will recall the definition of the intersection complex and of
the weighted cohomology complexes. Remember that ; is the open immersion
MK@G, xX) — MK(G, X)*.

Remark 1.4.1 We will need to use the fact that the sheaves FXV are mixed with
known weights. So we fix categories Ro, - . ., R, as in section 1.3, satisfying condi-
tions (c) and (7) of 1.3. If G¥ is of abelian type, we can simply take Ry = Repg.

Definition 1.4.2 (i) LetV € ObRepg. The intersection complex on M*X(G, X)*
with coefficients in V' is the complex

ICYV = G (FXV [d])[—d].

(if) (cf.[M2]4.1.3) Lets,...,t, € Z U {£oo}. Foreveryr € {1,...,n}, write
a, = —t. + d,. Define an additive triangulated functor

W=zt DY(Ro) —> D, (MM(G, X)*, K;)

in the following way: for every m € Z, if V' € Ob D’(Ry) is such that all
H' V,i € Z, are pure of weight m, then

The definition of the weighted cohomology complex in (ii) was inspired by the
work of Goresky, Harder and MacPherson ([GHM]). Proposition 4.1.5 of [M2]
admits the following obvious generalization.

Proposition 1.4.3 Let#,...,t, € Z be such that, for every r € {1,...,n}, d, —
d <t. <14d,—d.Then, forevery V' € Ob Ry, there is a canonical isomorphism

Icy wEezhy,

We now want to calculate the restriction to boundary strata of the weighted coho-
mology complexes. The following theorem is a consequence of propositions 3.3.4
and 3.4.2 of [M2].

Theorem 1.4.4 Leta = (ag,...,a,) € (Z U {£oo})"*L. Then, for every L e
Ob D,’;(MK(G,X), K;) such that all perverse cohomology sheaves of L are
pure of weight aq, there is an equality of classes in the Grothendieck group of
Db (MK(G, X)*, K):

wegRjLI= D (=1 lingWea, iy - inyWeq, in jiL].

1<my<--<n,<n
Therefore it is enough to calculate the restriction to boundary strata of the com-

plexes iy w<q, iy - ..im!wfanli,’llj!}‘KV, 1<n; <--- <n, <n. The following
proposition generalizes proposition 4.2.3 of [M2] and proposition 5.2.3 of [M1].
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Proposition 1.4.5 Let ny,...,n, € {1,...,n} be such that n; < --- < n,,
ai,...,a, € Z U {£oo}, V € Ob D’(Ro) and g € G(Ay). Write P = P,, N
... NP, ; remember that, in section 1.1, before proposition 1.1.3, we constructed a
setCp  P(@QQ,, (Ay) \ G(Af)/K and a map from this set to the set of boundary
strata of M¥(G, X)* associated to P, . Foreveryi € {1,...,r}, letw; : G,, —>
G,, be the cocharacter associated to the Shimura datum (G,,, A,,) as in section
1.3; the image of w; is contained in the center of G,,, and w; can be seen as a
cocharacter of Mp. Foreveryi e {1, ...,r}, writet; = —a; + d,,. Let

oo Ripws it REFEV.

Then there is a canonical isomorphism

ok . Lk
L= lnr,gRlnr*wwf’n,

L TexLe,
C
where the direct sum is over the set of C = (X1,..., X,) € Cp that are sent
to the stratum Im(,, ), Tc is the obvious morphism X, — Im(,, o) (a finite
étale morphism), and L is an A-adic complex on X, such that, if 7 € G(A,) is a
representative of C, there is an isomorphism

Le  FYMRT(H /Ky, RU(Lie(Np), V) <y <),

where H = hAKh 1 NP(Q)Q,, (A ), H, =hKAINP(Q)N,, (A )NL,, (Q)N,, (A /),
Ky = hKh 1N Np(Q)N,, (Ay) and, foreveryi e {1, ..., r}, the subscript “< ¢,
means that the complex RT"(Lie(Np), V') of representations of M p is truncated by
the weights of w;(G,,) (cf. [M2] 4.1.1).

Remember that the Levi quotient Mp is the direct product of G,, and a Levi
SUbgrOUp Lp of Ln,‘- Write I'; = HL/KN and X; = LP(R)/KL,DOALP(R)O,
where K ~ is @ maximal compact subgroup of L»(R) and A, is, as in section
1.2, the maximal split subtorus of the center of L p; also remember that ¢ (L) =
dim(X;)/2. Then ', is a neat arithmetic subgroup of L »(Q), and, for every W e
Ob D”(Rep,_,),

RI(Tp, W)= RI(Tp \ X., Flew).
Write
RT (T, W)= RT (T, \ X, F''W).

If W € Ob Db(RepMP), then this complex can be seen as an object of Db(RepGW),
because it is the dual of RT"(I"z, W*)[dim(X ;)] (where W* is the contragredient of
W). Define in the same way a complex RT'. (K., W) for K; a neat open compact
subgroup of Lp(A ;) and W € Ob D”(Rep,_,).

Corollary 1.4.6 Write

M =i* iy wegi

. J K
g ...lnl!wfallnljgf V.

!
ny
Then there is a canonical isomorphism

M TesMc,
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where the sum is as in the proposition above and, for every C = (X1, ..., X,) € Cp
that is sent to the stratum Im(i,, ), Mc is an A-adic complex on X, such that, if
h is a representative of C, then there is an isomorphism (with the notation of the
proposition)

Me  FYVPERT(HL /Ky, RT(Lie(Np), ¥z =)= dim(Ay, /Ac)]-
Proof. Let I* be the contragredient of 7. The complex dual to M is
D(M) =i  Riyw=_q i ... Rinsw=_gin RjxD(F V)
=iy Ry oo 0% .. Rigaws_oi% Rj(FV*[2d)(d))
= (i RinsWz2da,1, . Rinsws24—ayiy, RjFV*)[2d]1(d).
Foreveryi e {l,...,r} lets; = —(2d —a; —1)+d,, =1—t; —2(d — d,,). By
proposition 1.4.5,

D(M) T M,
C
with
My FVHLRD(H, /Ky, RT(Lie(Np), V*) oy, . <5)[2d1(d).

Take Mc = D(M(). It remains to prove the formula for Mc.
Let m = dim(Np). By lemma (10.9) of [GHM],

R Hom(RF(L|E(Np), V*)<sl ..... <S> Hm(Lle(Np), Q))[_m]v

and H” (Lie(Np), Q) is the character y — det(Ad(y), Lie(Np))~* of Mp (only
the case of groups G with anisotropic center is treated in [GHM], but the general
case is similar). In particular, H; /Ky acts trivially on H” (Lie(Np), Q), and the
group w, (G,,) acts by the character » —> A2@=%.) (w, is defined as in proposition
1.4.5). Hence

Mc  FYPHRTo(HL /Ky, RT(Lie(Np), V)z,....=,)lal,
with
a=2d, +m+2q(Lp) —2d =2q(G, ) +2q(Lp) +dim(Np) — 2¢(G)
=—dim(Ay, /Ac). B

Proof of proposition 1.4.5. Let C = (X1,...,X,) € Cp. Let I, be the locally
closed immersion X; — MK(G, X) and, for every m € {1,...,r — 1}, denote
by j, the open immersion X,, — X and by 7,41 the locally closed immersion
Xny1 — X, (where X7 is the Baily-Borel compactification of X,,). Define a
complex L¢ on X, by

Lo =wag D'Rjrtwog I . wog [FRGFCV.

Let us show by induction on r that L is isomorphic to the direct sum of the
Te«Le, for C € Cp that is sent to the stratum Y := Im(i,, ,). The statement is
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obvious if » = 1. Suppose that » > 2 and that the statement is true for » — 1.
Let Y1,..., Y, be the boundary strata of M (G, X')* associated to P,,_, whose
adherence contains Y. Forevery i € {1, ..., m}, letu; : ¥; — M*<(G, X)* be the
inclusion, and let

[ . . o . K
L; = u; Riy, ;sWsq, (i, . ... Rl,,l*w>alln1Rj*]: V.

*
ne_1

It is obvious that

L= i:,_ngui*wM,_Li.
i=1
Write P =P,, Nn---NP, _,. Leti € {1,...,m}. By the induction hypothesis, L;
is isomorphic to the direct sum of the T¢/, L over the set of C’ € Cp/ that are sent
to Y;, where L is defined in the same way as L¢. Fix C' = (X1, ..., X,_1) thatis
sent to ¥;; let us calculate i;;l_’gRui*wM,_ Tcw L. There is a commutative diagram,
with squares cartesian up to nilpotent elements:

r % Jr=1
Y’ X7 X1

Y Y; Y;

where Y is a disjoint union of boundary strata of .X*_, associated to the parabolic
subgroup (P,, NQ,, ,)/N,, ,. Moreover, the vertical arrows are finite maps, and the
maps T and T are étale. By the proper base change isomorphism and the fact that
the functors w., commute with taking the direct image by a finite étale morphism,
there is an isomorphism

i:",gRu,-*er TC’*LC’ = T*w>a, [/*Rjr—l*LC“
The right-hand side is the direct sum of the complexes
(T o I,)xwsg, I:Rjrfl*LC’ = TciLc,

for I, : X, — X , in the set of boundary strata of X**_, included in Y and
C = (X1,..., X,). These calculations clearly imply the statement that we were
trying to prove.

It remains to prove the formula for L given in the proposition. Again, use induc-
tion on r. If » = 1, the formula for L is a direct consequence of Pink’s theorem
(1.2.3) and of lemma 4.1.2 of [M2]. Supppose that » > 2 and that the result is
known for» — 1. Let C = (X1, ..., X;) € Cp, and let 1 € G(A ;) be a representa-
tiveof C. Write P =P, N---NP,,_,,C' = (X1,..., X,1),

H=hKh ™ NP@QQ,, (A),
Hy = AKh™  NP@)N,, (A ) N Ly, (@N,, (Ap) =HNL, (QN,, (A)),
Ky = 2K P ANR(Q)N,, (A f),

H = hKh ' NP (@Q)Q,, ,(A)),
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H, = hKh PO P@QN,, (A ) N L, ,(@N,, ,(A) =H NL, (QN, _,(A)),

Ky = hKE™ P ANp (QIN,, , (A ).
By the induction hypothesis, there is a canonical isomorphism
Lo FYHLRD(H, /Ky, RT(Lie(Np), V) <y i 1)
Applying Pink’s theorem, we get a canonical isomorphism
Le weg FYMRD(HL/HY, RT(H, /Kly, RT(Lie(N,, ), V)< <i 1))
There are canonical isomorphisms
RU(HL/H}, RT(H,/KYy, =) RT(H /Ky, RT(Ky/Ky, =)
RT(H. /Ky, RT(Lie(Ny, /Ny, ), —))
(the last isomorphism comes from van Est’s theorem, cf. [GKM] §24). On the other

hand, for every i € {1, ..., r — 1}, the image of the cocharacter w; : G,, — G,,
is contained in the center of G, ; hence it commutes with G,,,_,. This implies that

RT'(Lie(N,, /N,,_,), R (Lie(N,,, ), V)<t .t,y)
= RI'(Lie(Ny,), V) <n...<t, s>
so that
Le woq FYMRT(HL /Ky, RT(LiIe(N,), V) oty )-

To finish the proof, it suffices to apply lemma 4.1.2 of [M2] and to notice that the
image of w, : G,, — G,, commutes with L, (Q), hence also with its subgroup
Hi/Ky. O

1.5 COHOMOLOGICAL CORRESPONDENCES

Notation 1.5.1 Let (T3, T2) : X' —> X1 x X, be a correspondence of sepa-
rated schemes of finite type over a finite field, and let ¢ : 7L, — TZ!LZ be a
cohomological correspondence with support in (71, 7»). Denote by @ the absolute
Frobenius morphism of X;. For every j € N, we write ®/¢ for the cohomological
correspondence with support in (®/ o Ty, T») defined as the following composition
of maps:

(®) o T1)*Ly = Ty ®* Ly TjLy — T)Ly.

First we will define Hecke correspondences on the complexes of 1.2. Fix M, L
and (G, X) asin 1.2. Let m1, my € L(Q)G(A ) and K/, K{}), K2 be neat open
compact subgroups of M(A ;) such that H' ¢ miH®m* N mH@m;*, where
H = Kj, N L@G(A ) and HO = K{) N LQG(A ;). This gives two finite
étale morphisms 7,,, : M(G, X)/H — M(G, X)/H?, i = 1,2. Write HY =
H® NL(Q) and H, = H' N L(Q). Let ¥ € ObRepy,. Fori = 1, 2, write

Ly = FHHYRTHD 7).
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By [P2] 1.11.5, there are canonical isomorphisms
i L FHMgrROHY, V),

where 6* RT'(H\”, V') is the inverse image by the morphism , : H/H, —H@/HY,
h —> m; " hm;, of the complex of HO /H\”-modules RT'(H', ¥7). Using the injec-

tionsH, — H),h —> m;*hm;, we getan adjunctlon morphism 6; RT(H", 7)

di
24 RU(H,, 7) and a trace morphism RT'(H,, V') —> g5 RT(HP, 1) (this last

morphism exists because the index of H7 in H(Lz) is finite); these morphisms are
H’/H’, -equivariant. The Hecke correspondence

Cmomy Ty Ly —> Ty Lo =Ty Ly
is the map
TiLy  FUHerRTHP, V)
dj
2 FHMRTH, V) > FHMesRUHP V) T L.

Note that, if L = {1}, then this correspondence is an isomorphism.

Remarks 1.5.2 (1) Assume that K, ¢ miKPm7t N moK@m;?t, and write
K, = Kj), NL(A,) and K = K(” N LA ). Usmg the methods of [M1]
2.1.4 (and the fact that, for every open compact subgroup K; of L(A /),
RT' (K., V) =@, RT (giKrg~ YN L), ), where (g;);c; is a system of
representatives of L(Q) \ L(Af) /Kp), it is possible to construct complexes
M; = F<u/K RO (K, 17) and FKu/K. RT(K/,, V). There are a correspon-
dence

(T To) + M¥/K5(G, ) — MKKE(G, 20) x MR (G, ),
and a cohomological correspondence, constructed as above,
Cmymy = Ty My —> T,i,zMz-

(2) There are analogous correspondences, constructed by replacing RF(H(Li), V)
and RT'(H',, V) (resp. RT'(KY, V) and RT'(K,, V)) with RT".(H'”, 7) and
RT.(H,, V) (resp. RT.(KY, V) and RT.(K), V)). We will still use the
notation c¢,,, ., for these correspondences.

Use the notation of section 1.4, and fix g € G(A ) and a second open compact
subgroup K’ of G(A /), such that K’ ¢ KN gKgL. Fix prime numbers p and ¢ as at
the end of 1.3. In particular, it is assumed that g € G(A ) and that K (resp., K') is
of the form K”G(Z,) (resp., K'"G(Z,)), with K? C G(AP) (resp., K'? C G(A”))
and G(Z,) a hyperspecial maximal compact subgroup of G(Q,). As in sectlon
1.4, we will use the notations M (G, X), etc, for the reductions modulo p of the
varieties of section 1.1.

Let ® be the absolute Frobenius morphism of MK(G, X)*. For every V e
Ob D’(Repg) and j € Z, let u; : (®/T)*FXV — T/FKV be the cohomo-
logical correspondence ®/c, 1 on FKV (with support in (&7 Ty, T1)).
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Let V' € Ob D*(Ro). By [M2] 5.1.2 and 5.1.3:

e foreveryn,...,t, € Z U {fo0}, the correspondence u ; extends in a unique
way to a correspondence

T (DT ) WEeZhy s T -2y,

e foreveryny,...,n, € {l,...,n}suchthatn; <...<n.andeveryas,...,a,€
Z U {£oo}, the correspondence u; gives in a natural way a cohomologi-
cal correspondence ON i, W< iy - .. inW<a iy JF<V  with support in
(@/T g, T1); Write iy, 1w, i} ... inyW<q i) juu; for this correspondence.

Moreover, there is an analog of theorem 1.4.4 for cohomological correspondences
(cf. [M2] 5.1.5). The goal of this section is to calculate the correspondences

I Wea, Iy iy Wegy iy fill ).
Fixny,...,n. €{1,...,n}suchthatn, < --- <n,anday,...,a, € ZU{do00},
and write
. .1 . 0K
L =iy weqi, ... lnl!wsallnljg}— v,
. .1 . N
U=\ Weq, iy oo inWegy by, ill).

Use the notation of corollary 1.4.6. By this corollary, there is an isomorphism

L (icTc)hLc,
CGCP

where, for every C = (X1,..., X,) € Cp, ic is the inclusion in MK(G, X)* of
the boundary stratum image of X, (i.e., of the stratum Im(i,, ), if & € G(A,)
is a representative of C). Hence the correspondence u can be seen as a matrix
(ucy.c,)c.coec,» @nd we want to calculate the entries of this matrix.

Let C), be the analog of the set Cp obtained when K is replaced with K’. The
morphisms 7', T4 define maps Ty, T : C,, —> Cp, and these maps correspond via
the bijectionsCpr  P(Q)Q,, (AH\G(A)/KandCp,  P(@Q)Q,, (A H\G(A ,)/K’
of proposition 1.1.3 to the maps induced by 4 — hgand h — h.

Let C; = (X, ..., xD), C, = (X, ..., X?) € Cp, and choose represen-
tatives &1, hy € G(Ay) of Cy and C,. Let C' = (X3, ..., X)) € C} be such that
To(C") = Cyand T1(C") = C». Fix a representative 2’ € G(A y) of C’. There exist
q1, 92 € P(Q)Q,, (A ) such that g1/" € higK and g2h" € hoK. Let g4, g, be the
images of g1, ¢» in L, (Q)G,, (A ). The following diagrams are commutative:

icr Ter ’ 4 forTe :
XK G xy X, ——— M¥ (G, )’
Tzﬂ T}l qu Tl
X"(ﬂl) ic; Te MK(G, X)* X}(,Z) ic, Te2) MK(G, X)*

By corollary 1.4.6, there are isomorphisms

Le, FHOMIRT.HP /KD, RT(Lie(N,,), V)ssy....20)lal
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and
Le, FHOMIRT(H® /KD, R (Lie(N,), V)ar,....=)al,

where 1, ..., t, are defined as in proposition 1.4.5, a = —dim(Ay, /Aq), HO =
hiKh7E N P@Q,, (A)), HY = HONL, (QN,, (A and K = HO AN, (A ).
We get a cohomological correspondence

®leg, g, (D Tg) Lo, — Ty Lo,
Define a cohomological correspondence

— = .
uc (DT )" (i, TeyhLey, — Tqlic,Te,)iLe,

by taking the direct image with compact support of the previous correspondence
by (ic, Tc,, ic,Tc,) (the direct image of a correspondence by a proper morphism is
defined in [SGA 5] 111 3.3; the direct image by a locally closed immersion is defined
in [M2] 5.1.1 (following [F] 1.3.1), and the direct image with compact support is
defined by duality). Finally, write

Neo = [KD 2 oK' NN, (A f)].

Proposition 1.5.3 The coefficient uc, ¢, in the above matrix is equal to
Z Neucr,
C/

where the sum is taken over the set of C' e C), such that T,(C") = C; and
T (C) = C,.

This proposition generalizes (the dual version of) theorem 5.2.2 of [M2] and can
be proved in exactly the same way (by induction on r, as in the proof of propo-
sition 1.4.5). The proof of theorem 5.2.2 of [M2] uses proposition 2.2.3 of [M2]
(via the proof of corollary 5.2.4), but this proposition is simply a reformulation of
proposition 4.8.5 of [P2], and it is true as well for the Shimura varieties considered
here.

1.6 THE FIXED POINT FORMULAS OF KOTTWITZ AND
GORESKY-KOTTWITZ-MACPHERSON

In this section, we recall two results about the fixed points of Hecke correspon-
dences, which will be used in 1.7.

Theorem 1.6.1 ([K11] 19.6) Notation is as in 1.5. Assume that the Shimura datum
(G, X) is of the type considered in [K11] 85, and that we are not in case (D) of
that article (i.e., that G is not an orthogonal group). Fix an algebraic closure T of
F,. Let V' € ObRepg. For every j > 1, denote by T'(j, g) the sum over the set
of fixed points in M¥ (G, X)(F) of the correspondence (&7 o T,, T1) of the naive
local terms (cf. [P3] 1.5) of the cohomological correspondence u ; on 7V defined
in section 1.5. Then

TG.g) = Y. ;v 80, (ST 05(¢) Tr(vo. V).
(v0:v,8)€Cq,;
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Let us explain briefly the notation (see [K9] §82 and 3 for more detailed expla-
nations).
The function f? € C?(G(Aiﬁ)) is defined by the formula

i
: vol(K'?) "
Forevery y e G(A_’}), write
0,(f?) = / fP(xtyx)dx,
G(AD),\G(Ah)

where G(Ai,’-)y is the centralizer of y in G(A‘;).

Remember that we fixed an injection 7 C Q,; this determines a place o of F
over p. Let Q" be the maximal unramified extension of Q, in @p, L be the unram-
ified extension of degree ;j of £y, in Q,, » = [L : Q,], = be a uniformizer of L
ando € GaI(Q’;’/QP) be the element lifting the arithmetic Frobenius morphism of
Gal(F/FF,). Let § € G(L). Define the norm N§ of § by

N8 =80(8)...0"71(8) € G(L).
The o-centralizer of § in G(L) is by definition
G(L)] = {x € G(L)|x8 = 8o (x)).

We say that 8" € G(L) is o-conjugate to § in G(L) if there exists x € G(L) such
that 8 = x 180 (x).

By definition of the reflex field F, the conjugacy class of cocharacters 7, o g :
Gm.c — Gg, x € X, of section 1.1 is defined over F. Choose an element p in
this conjugacy class that factors through a maximal split torus of G over O (cf.
[K9] 83 p. 173), and write

6% = Loi0y o Hoion) € HG(L), GOL)).

(H(G(L), G(Oy)) is the Hecke algebra of functions with compact support on G(L)
that are bi-invariant by G(O,).) For every § € G(L) and ¢ € C°(G(L)), write

106 = [ g0 o
G(LZ\G(L)

Let T be a maximal torus of G. The conjugacy class of cocharacters /oo, x € X,
corresponds to a Wey! group orbit of characters of T; denote by 1 the restric-
tion to Z(G) of any of these characters (this does not depend on the choices).

It remains to define the set Cg ; indexing the sum of the theorem and the coeffi-
cients c(yo; y, ). Consider the set of triples (yo; v, 8) € G(Q) x G(A‘}) x G(L)
satisfying the following conditions (we will later write (C) for the list of these
conditions):

® o is semisimple and elliptic in G(R) (i.e., there exists an elliptic maximal
torus T of Gg such that y5 € T(R)).

e For every place v = p, oo of Q, y, (the local component of y at v) is G(Q,)-
conjugate to yy.
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e N§and y, are G(@p)-conjugate.
e The image of the o-conjugacy class of & by the map B(Gg,) —

X*(Z(G)%@p/ Q)Y of [K9] 6.1 is the restriction of —uq to Z(G)%a@/Q),

Two triples (yo; v, 8) and (yg; ¥', 8’) are called equivalent if y and y; are G(Q)-
conjugate, y and y’ are G(A”) -conjugate, and 8 and &’ are o-conjugate in G(L).

Let (yo; v, 8) be atriple satlsfylng conditions (C). Let /o be the centralizer of y,
in G. There is a canonical morphism Z(G) — Z(Io) and the exact sequence

1— ZG) — z(Iy) — Z(10)/2(G) — 1
induces a morphism
10((Z(To)/ Z(G)* ) — H'(@, Z(G)).
Denote by K(/p/Q) the inverse image by this morphism of the subgroup

v place of Q

Ker'(Q, Z(G)) := Ker (Hl(Q, Z(G)) — HL{(Q,, Z(é))) )

In [K9] 82, Kottwitz defines an element a(yo; ¥, §) € K(lo/Q)? (where, for every
group 4, AP = Hom(4, C*)); this element depends only on the equivalence class
of (yo; y, 8). For every place v = p, oo of Q, denote by 7/ (v) the centralizer of y, in
Gy, ; as yo and y, are G(Q,)-conjugate, the group 7 (v) is an inner form of I, over
Q,. On the other hand, there exists a Q ,-group 7 (p) such that 7 (p)(Q,) = G(L)¥,
and this group is an inner form of Iy over Q,. There is a similar object for the
infinite place: in the beginning of [K9] 83, Kottwitz defines an inner form 7 (oco)
of Iy; 1(oc0) is an algebraic group over R, anisotropic modulo Ag. Kottwitz shows
that, if a(y; ¥, 8) = 1, then there exists an inner form 7 of I over Q such that,
for every place v of Q, I, and I(v) are isomorphic (Kottwitz’s statement is more
precise, cf. [K9] pp. 171-172).

The set Cg,; indexing the sum of the theorem is the set of equivalence classes of
triples (yo; v, 8) satisfying conditions (C) and such that «(yo; y, §) = 1. For every
(yo; v,8) inCg ;, let

c(yo; v, 8) = vol(1(Q) \ 1(A )| Ker(Ker (Q, Ip) — Ker'(Q, G))|.

Finally, the Haar measures are normalized as in [K9] §3. Take on G(A’f’) (resp.,
G(Q,), resp., G(L)) the Haar measure such that the volume of K? (resp., G(Z,,),
resp., G(Op)) is equal to 1. Take on I(Aii) (resp., 1(Q,)) a Haar measure such that
the volume of every open compact subgroup is a rational number, and use inner
twistings to transport these measures to G(A )y and G(L)§.

Remark 1.6.2 If K' = KN gKg™!, we may replace /7 with the function

:ﬂ.KPgKP
vol(KP)

(cf. [K11] 816 p. 432).

€ H(G(A), KP) := CZ(KP\ G(A])/KP)
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Remark 1.6.3 There are two differences between the formula given here and
formula (19.6) of [K11]:

(1) Kottwitz considers the correspondence (T, ®/ o T1) (and not (®/ o Ty, 1))
and does not define the naive local term in the same way as Pink (cf. [K11]
816 p. 433). But is is easy to see (by comparing the definitions of the
naive local terms and composing Kottwitz’s correspondence by 7,-1) that the
number T(j, /) of [K11] (19.6) is equal to T'(j, g~1). This explains that
the function of C?(G(A?)) appearing in theorem 1.6.1 is vol(K'”) 71 g»,
instead of the function fP = voI(K”’)*lllegfl of [K11] 816 p. 432.
(Kottwitz also takes systematically K’ = K N gKg™!, but his result general-
izes immediately to the case where K’ is of finite index in K N gKg™.)

(2) Below formula (19.6) of [K11], Kottwitz notes that this formula is true for
the canonical model of a Shimura variety associated to the datum (G, X, 2~1)
(and not (G, X, h)). The normalization of the global class field isomorphism
used in [K9], [K11], and here are the same (it is also the normalization of
[D1] 0.8 and [P2] 5.5). However, the convention for the action of the Galois
group on the special points of the canonical model that is used here is the
convention of [P2] 5.5, and it differs (by a sign) from the convention of [D1]
2.2.4 (because the reciprocity morphism of [P2] 5.5 is the inverse of the
reciprocity morphism of [D1] 2.2.3). As Kottwitz uses Deligne’s conven-
tions, what he calls canonical model of a Shimura variety associated to the
datum (G, X, h~1) is what is called here canonical model of a Shimura vari-
ety associated to the datum (G, X, 4).

Remark 1.6.4 Actually, Kottwitz proves a stronger result in [K11] §19: For every
y € G(A‘f’-), let N(y) be the number of fixed points x” in M*' (G, X)(F) that can
be represented by an element X of M(G, X)(IF) such that there exist £ € K and
g € G(A,) with ®/(¥)g = ¥k and gk* G(A”)-conjugate to y (this condition
depends only on x’, and not on the choice of ). Then

N@) =) el 7,80, (f)T 05(95),
8

where the sum is taken over the set of o-conjugacy classes of § € G(L) such that
there exists yp € G(Q) such that the triple (yo; ¥, 8) isin Cg ; (if such a yp exists,
it is unique up to G(Q)-conjugacy, because, for every place v = p, oo of Q, it is
conjugate under G(Q,) to the component at v of y). Moreover, if x’ is a fixed point
contributing to N(y), then the naive local term at x’ is Tr(y,, V) (where y, is the
¢-adic component of y).

Remark 1.6.5 Some of the Shimura varieties that will be used later are not of the
type considered in [K11] 85, so we will need another generalization of Kottwitz’s
result, in a very particular (and easy) case. Let (G, X, &) be a Shimura datum (in
the sense of section 1.1) such that G is a torus. Let ) be the image of X’ by the
morphism # : X — Hom(S, G) () is a point because G is commutative, but
the cardinality of X’ can be greater than 1 in general; remember that the morphism
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h is assumed to have finite fibers, but that it is not assumed to be injective). Let
G(R)™ be the subgroup of G(R) stabilizing a connected component of X (this
group does not depend on the choice of the connected component) and G(Q)* =
G(Q) N G(R)™. The results of theorem 1.6.1 and of remark 1.6.4 are true for the
Shimura datum (G, ) (in this case, they are a consequence of the description of
the action of the Galois group on the special points of the canonical model, cf. [P2]
5.5). For the Shimura datum (G, X)), these results are also true if the following
changes are made:

e multiply the formula giving the trace in theorem 1.6.1 and the formula giving
the number of fixed points in remark 1.6.4 by | X|;
e replace Cg ; with the subset of triples (yo; . 8) € Cg,; suchthat yp € G(Q)™.

This fact is also an easy consequence of [P2] 5.5.

The fixed point formula of Goresky, Kottwitz and MacPherson applies to a
different situation, that of the end of 1.2. Use the notation introduced there. Let
V e ObRepg, g € G(Ay), and let K, K’ be neat open compact subgroups of
G(Aj) such that K ¢ K n gKg™. This gives two finite étale morphisms T,
Ty : M¥ (G, X)(C) — MKX(G, X)(C). Define a cohomological correspondence

ug: TPFV — T{F*V

as at the beginning of section 1.5. The following theorem is a particular case of
theorem 7.14.B of [GKM] (cf. [GKM] (7.17)).

Theorem 1.6.6 The trace of the correspondence u, on the cohomology with com-
pact support RT.(M*X(G, X)(C), FKV') is equal to

D o (=1)IMAAD TN M () T (M) Oy (RDIDS () Y2 ey, 1),
M Y

where the first sum is taken over the set of G(Q)-conjugacy classes of cuspidal
Levi subgroups M of G and, for every M, the second sum is taken over the set y of
semisimple M(Q)-conjugacy classes that are elliptic in M(R).

Let us explain the notation.

1
I volfli’) € C(G(Ay)), and fy is the constant term of f>° at M (cf.

[GKM] (7.13.2)).
e Let M be a Levi subgroup of G. Let A, be the maximal (Q-)split subtorus of
the center of M and

nf; = | Norg (M)(Q)/M(Q)].
M is called cuspidal if the group Mg has a maximal (R-)torus T such that
T/Au x is anisotropic.
e Let M be a Levi subgroup of G and y € M(Q). Let M” be the centralizer of
yinM, M, = (M")°,

My) = IMY(@Q)/M, Q)]
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and
DS (y) = det(1 — Ad(y), Lie(G)/Lie(M)).
® x(M,) is the Euler characteristic of M,,, cf. [GKM] (7.10).

Remark 1.6.7 According to [GKM] 7.14.B, the formula of the theorem should
use Tr(y, V*) (or Tr(y~%, 7)) and not Tr(y, V). The difference between the
formula given here and that of [GKM] comes from the fact that [GKM] uses a
different convention to define the trace of u, (cf. [GKM] (7.7)); the convention
used here is that of [SGA 5] Ill and of [P1].

1.7 THE FIXED POINT FORMULA

Use the notation introduced before proposition 1.5.3 and in section 1.6. Assume that
the Shimura data (G, X) and (G;, &;), 1 <i < n — 1, are of the type considered
[K11] 85, with case (D) excluded. (In particular, G is of abelian type, so we can
take Ro = Repg, i.e., choose any ¥ € Ob D’(Repg).) Assume moreover that
(G,,, &) is of the type considered in [K11] 85 (case (D) excluded) or that G,, is a
torus.

We want to calculate the trace of the cohomological correspondence

U (DT ) W2y — T2y,

Assume that w(G,,) actsonthe H' V', i € Z, by t — ™, for a certain m € Z
(where w : G,, —> G is the cocharacter of 1.3).
Let

£ =vol(K'?) ™ oo

Let P be a standard parabolic subgroup of G. Write P = P,, N --- N P,,, with
ny<---<n,. Let

Tp=mp ) (~HIMAAD @)Y b ()T (L) 1D ()Y
L YL

Yo et ¥ 80y (2D 0y, (LLz,)8 5, ()T 05 (85)

(vo:v.89)€Cg,

X8 (VL) Tr(vLvo. RT(LIENNP), V)2, .2ty +m)+

where the first sum is taken over the set of L »(Q)-conjugacy classes of cuspidal
Levi subgroups L of L p, the second sum is taken over the set of semisimple conju-
gacy classes y; € L(Q) that are elliptic in L(R), and

® L(Z,) is a hyperspecial maximal compact subgroup of L(Q,);

e mp=1ifn, < norif (G,, &,) is of the type considered in [K11] 85, and
mp = |&,,|ifn., =nand G,, isatorus;

° Cén”]. = Cg, ; ifn, <norif (G,, &,) is of the type considered in [K11] 85,
and, if G, is a torus, Cg”’j is the subset of Cg,_; defined in remark 1.6.5.


http:GKM](7.10
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Write also
To= Y. cin:y.8)0,(f*")T 05¢%) Tr(y. V).

(Vo37.8)€Cq,;

Theorem 1.7.1 If j is positive and big enough, then

P

where the sum is taken over the set of standard parabolic subgroups of G. Moreover,
if g=1and K = K/, then this formula is true for every j € N*.

Proof. Foreveryi € {1,...,n}, leta; = —t; — m + dim(M;). For every standard
parabolic subgroup P =P,, N--- NP, ,withn; < --- < n,, let

Th = (=1) Tr(inaw=a, iy, - - Iy W=a, iy, 1 )).
Let
T¢, = Tr(;, RU(M(G, X)i. (\FV)e).
Then, by the dual of proposition 5.1.5 of [M2] and the definition of W z/:20 |

Tr(@,. RU(MN(G, X5, (W= )p)) = T + Y T,
P

where the sum is taken over the set of standard parabolic subgroups of G. So we
want to show that 7; = Tg and T, = Tp. FiXxP = G (and ny, ..., n,). It is easy
to see that

dlm(AMP/Ag) =r.
Leth e G(Af}). Write
Ky = hKhTENN(A ),

Kpi=hKh P NP(A ),
Kyn = Kp /K p,
K= (hRKh™ N Lp(A)Np(A ) /Ky,
Hy = hKh ' NP@Q)Q,, (A)),

Hos = hKh ™2 N Lp@Np (A ).

Define in the same way groups K/, ,, etc., by replacing K with K'. If there
exists ¢ € P(Q)Q,, (A,) such that ghK = hgK, let g be the image of ¢ in
Mp(A /), and let u;, be the cohomological correspondence on FHi/Hei RT.(H, 4,
RT(Lie(N,,), V)=, ... >4, )[a] with support in (®/ Ty, Ty) equal to ®/cz 1 (we may
assume that ¢ € P(A‘;-), hence that g € MP(A‘/’.)). This correspondence is called
uc in section 1.5, where C’ is the image of 7 in C). If there is no such ¢ €
P(Q)Q,, (Ay), take u;, = 0. Similarly, if there exists ¢ € P(A) such that
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ghK = hgK, let g be the image of g in Mp(A /), and let v, be the cohomolog-
ical correspondence on FKui/Kew RT.(Ky 5, RT(Lie(Np), V)2, )la] with
support in (®/ T, T1) equal to ®/cz 1 (we may assume that g € P(A ). If there is
nosuch g € P(A ), take v, = 0. Finally, let N, = [Ky 5 : Ky, 1.

Let h € G(A‘}) be such that there exists ¢ € P(A,) with ghK = hgK. By
proposition 1.7.2 below,

Tr(va) = Y Tr(up),
h/

where the sum is taken over a system of representatives 42’ € G(A‘}) of the double
classes in P(Q)Q,, (Ay) \ G(A,)/K’ that are sent to the class of # in P(A ) \
G(A;)/K’ (apply proposition 1.7.2 with M = Mp, Ky = Ky, m equal to the
image of ¢ in Mp(A /)). On the other hand, by proposition 1.5.3,

Tp = (-1 Z Ny Tr(us),

where the sum is taken over a system of representatives # € G(A ) of the double
classes in P(Q)Q,, (A r) \ G(A y)/K’. Hence

Tp = (=1 Z Ny Tr(vp),

where the sum is taken over a system of representatives / € G(A ) of the double
classes in P(Ay) \ G(A,)/K'.

Leth € G(A”) Assume that there exists g € P(A ) such that ghK = hgK.
Let g be the image of ¢ in MP(A ). Write g = qrqu, With g, € LP(A ) and
qu € Gy, (AD). Let

-1
fG ao= VOI(K/M,;,/K,L.h) ]qu(KM.h/KL.h)‘

Notice that K} , € Kz, Ngr KL,;,qul. Letu,, be the endomorphism of RI".(K; ,
RT(Lie(Np), V), ...>;, ) induced by the cohomological correspondence
Cqr 1+

qTo calculate the trace of v,, we will use Deligne’s conjecture, which has been
proved by Pink (cf. [P3]) assuming some hypotheses (that are satisfied here), and
in general by Fujiwara ([F]) and Varshavsky ([\V]). This conjecture (which should
now be called a theorem) says that, if j is big enough, then the fixed points of the
correspondence between schemes underlying vy, are all isolated, and that the trace
of v;, is the sum over these fixed points of the naive local terms. By theorem 1.6.1
and remarks 1.6.4 and 1.6.5, if ; is big enough, then

Tro=D'mp Y. e v. )0, (53N TOs($5")
(vo:v.0)€Cs,
Tr(qu 70, RT (K., RT(Lie(Np), V)zt,,l,...,zt,,,))~

Let

pr h VOI(KL h) 1]1‘]LKL,h'
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Then

Son =10, f1h
with f be CW(LP(A )). By theorem 1.6.6, for every y € G, (Q),
Tl’(qu Y0, RT(Kyp 1, RT (Lie(Np), V)zt,,l ..... zr,,,))

= Z(—l)dim(AL/ALP)(néP)*l
L

YT X W)IDL )M 0y, (7 1)

YL
x Tr(yryo, RT'(Lie(Np), V)zr,,l AAAAA Zt,,r)a

where the first sum is taken over the set of conjugacy classes of cuspidal Levi
subgroups L of L p and the second sum is taken over the set of semisimple conju-
gacy classes y; of L(Q) that are elliptic in L(R). To show that 7, = Tp, it is
enough to show that, for every Levi subgroup L of Lp, for every y, € L(Q) and
every (yo; v, 9) € Ceg,,.j»

Z Nh OyL ((ff.;h)L) Oy (fg,)/,,p) - yl_y (fLG p)ap((@ )(VL VO) OVL (1L(Z,,))8P(R)(VO)
h

where the sum is taken over a system of representatives / € G(A’f’-) of the double
classes in P(A ;) \ G(A,)/K' (with f7°, = 0and f;;” = Oif thereisno g €
P(A /) such that ghK = hgK).

Fix a parabolic subgroup R of L » with Levi subgroup L, and let P" = RG,, Np
(a parabolic subgroup of G with Levi subgroup LG,,). Fix a system of represen-
tatives (%;);cs in G(A ) of P(A) \ G(Ay)/K'. For every i € I, fix a system of

representatives (mU),EJI in LP(A”) of R(A ) \ Lp(Ay)/K7 , . Then (m;;h;); j is
a system of representatives of P/(A )\ G(A,)/K'. By lemma 1.7.4 below,

Oy S8 = 8336y (2 D r mijhi) Oy (fvmi)
LJ
where
r(mishi) = [(mihi)K(miih) ™ ONpi(Ag) = (mizhi)K (mijhi) ™ ONp (A )]
and fpr s, is equal to the product of
vol (((mijh‘)K/(mijh')_ N P/(A/'))/((mijh‘)K/(mijh‘)_l N NP/(Af)))7l
and of the characteristic function of the image in (LG, )(A ) = Mp/(A_’f’) of
(mijhi)gK(m;zh;)~ In P/(A?). Note that
r(miih;) = Ny,r'(m;j),
where
r(ml])_[ml/KLhm ﬁNR(A/’) ml} Lhm mNR(Af)]
that

Spany(ry) = dpany(Ve)dpan (yry),
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and that
fP’,muhf = fR,m;/fGo?}’t,-p’
where fz »,; is the product of
-1
vol (/K mi7" 0 RGA )/ (K, mE O NR(A )

and of the characteristic function of the image in L(A )= MR(AP) of
(m;jh;)gK(m;;h;)~ -n R(A ,)Np(A ). By applying lemma 1.7. 4 again, we find,
foreveryi e I,

D7 mi) Oy, (fram,) = 8l (1) O (770

jed:

Finally,
> Nk Oy, (22 4D Oy (55D

iel

= 0y, (AL, Y Ni Oy, (S5 0y (35D
iel
= 0y, (AL, D Ni, Oy (S50 (i) Y 7' mi) Oy, (from,)
iel / Jjedi
1/2
= Oy (AL, @IV8 G (1) D Y rOmishi) Oy (S myn)
iel jeJ;
1/2 -1/2 s
= Oy, (ALy@,DUIB G, VIS o, (V17) Oy (ST
-1/2 s
= Oy, (AL, (V17) Oy (TS

.. . . . -1/2
To finish the proof, it suffices to notice that (1_,z,))L = 1Lz, that Sp(gi)(yL y) =

P(Ap (vLv0), that, as y.yo € Mp(Q), the product formula gives

P(A” (yLyo) = 8[3(@ )(VLVO)SP(]R)(VLVO)
and that

3p@,) (YL Y0) = dp@,) (VL) P, (Yo) = dr,)(Y0)

if 0,,(1Lz,) = 0 (because this implies that y;, is conjugate in L(Q,) to an
element of L(Z,)).

If j is big enough, we can calculate 7, using theorem 1.6.1 and Deligne’s conjec-
ture. Itis obvious 7, = Tg.

If g = 1and K = K’, then %, is simply the cohomological correspondence
induced by ®~. In this case, we can calculate the trace of u;, for every j € N*,
using Grothendieck’s trace formula (cf. [SGA 4 1/2] Rapport 3.2). O

Proposition 1.7.2 Let M, L and (G, X)) be as in section 1.2. Let m € M(A/),
and let K, Ky be neat open compact subgroups of M(A ) such that K, C
Ky NmKym™t. Let K, = Ky N L(A ;) and K = Kj;/K;. Consider a system of
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representatives (m;);c; of the set of double classes ¢ € L(Q)G(A y) \ M(A ,)/K),
such that cmKy, = cKy. Forevery i € I, fix/; € L(Q) and g; € G(A f) such that
ligim; € m;mK,,. Assume that the Shimura varieties and the morphisms that we
get from the above data have good reduction modulo p as in section 1.3 (in parti-
cular, Ky, and K/, are hyperspecial at p, and m, m; € M(A%), g € G(A")). Let
I, be the field of definition of these varieties and IF be an algebraic closure of F,.

Forevery i € I, let H; = m;Kym;* N L(Q)G(As), H;, = H, N L(Q) and
K:; =H;/H; .. Fix V € ObRepg. Let

L =FKRI(K,, V),
L;=FSRTH . V),
M = FXRT.(K, V),

M; = FXRT.(Hi1, V).
Then, for every o € Gal(F/F,),

(1)) Tr(ocyg.1, RTMS (G, X)g, Lig)) = T(0cp1, REM (G, X)g, Lr)).
iel
)Y Tr(ocy g1, ROMS (G, X)p. M;5))=Tr(ocp 1. R M (G, X)p, Mp)).
iel
Proof. Write m = /g, with/ € L(A ) and g € G(A y). We may assume that m;
L(A ), hence g; = g, foreveryi € 1. LetK® = H;NG(A ;) = mKym1NG(A ).
Point (1) implies point (2) by duality.
Let us prove (1). Let ¢,, be the endomorphism of RI"(K,,, V') equal to

RT(Kyy, V) —> RT(K,,. V) =5 RT(Kyy, V),

where the first map is induced by the injection K, — Ky, k —> m~Ykm, and
the second map is the trace morphism associated to the injection K, C Kj,. Define
in the same way, for every i € I, an endomorphism ¢;,, of RT'(H;, V). Then

RT(Ky, V) RT(H:, V)

iel
andc,, = ;. Cig, SO itis enough to show that this decomposition is Gal(F /I, )-
equivariant. Leto € Gal(F/F,). Then o induces an endomorphism of RI"(K°, V)=
RT(M¥ (G, X)g, F¥"Vp), that will still be denoted by o, and, by the lemma below,
the endomorphism of RT'(K,,, V) (resp., RT'(H;, V)) induced by o is

RT(Ky/(Ky N L(Ay)), o)

(resp., RI'(H;/(H; N L(Q)), 0)).
This finishes the proof. a
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Lemma 1.7.3 Let M, L and (G, X’) be as in the proposition above. Let K;, be a
neat open compact subgroup of M(A /). Let K; = Kyy N1 M(A (), Kg = Ky N
GA),H=KyNL@QGA /), H, =Ky NLQ), K=Ky/K,and K" = H/H;.
Let ¥ € ObRepy and o e Gal(F/F,). The element o induces an
endomorphism of RT'(Kg, V) = R[(MKS (G, X)r, FXo Vi) (resp., RT(Ky, V) =
RT(MK(G, X)p, FKRT (K, V)g), resp., RI'(H, V) = RI(MX(G,X)p,
FKRT(H,, V)r)), that will be denoted by ¢q (resp. ¢, resp. ¢’). Then

¢ = RT'(Ky/Kg., ¢0)
and

¢’ = RT'(H/Kg, o).

Proof. The two equalities are proved in the same way. Let us prove the first one. Let
Y = MKe(G, X), X = MX(G, X), let f: Y — X be the (finite étale) morphism
Ty and L = FKRT (K, V). Then, f*L = FKeRT'(K., V) by [P1] (1.11.5), and
L is canonically a direct factor of f, /*L because 1 is finite étale, so it is enough
to show that the endomorphism of
RT'(Yr, f*L) = RT'(Kg, RT'(K., V) = RI'(K., RT'(Kg, V)

induced by o is equal to RT (K, ¢o). The complex M = FKoJ on Y is a complex
of K -sheaves in the sense of [P2] (1.2), and RT" (K, M) = f*L by [P2] (1.9.3).
To conclude, apply [P2] (1.6.4). O

The following lemma of [GKM] is used in the proof of theorem 1.7.1. Let G be
a connected reductive group over QQ, M a Levi subgroup of G and P a parabolic
subgroup of G with Levi subgroup M. Let N be the unipotent radical of P. If f €
C(G(A)), the constant term f); € C2°(M(Ay)) of f at M is defined in [GKM]
(7.13) (the function f,, depends on the choice of P, but its orbital integrals do not
depend on that choice). For every g € M(A ;), let

Spa,(g) = det(Ad(g), Lie(N) ® A )la, .

Let g € G(A/) and let K’, K be open compact subgroups of G(A ;) such that
K’ c gKg L. Forevery h € G(A ), let Ky (%) be the image in M(A ;) of hgkh™1N
P(Ay),

Srn =VOl(BK'A™ N P(A )/ (hK'A™ NN(A ) Mk, € CEM(A ),
and

r(h) = [hKE P ANA p) - KA ANCA )]
(Note that, if there is no element g € P(A f) such that g2K = hgK, then Ky (k) is
empty, hence fp;, = 0.) Let
f=vol(K) 1
and

fo=Y_r) fon

h
where the sum is taken over a system of representatives of the double quotient
P(Ap)\GA,/K.
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Lemma 1.7.4 ([GKM] 7.13.A) The functions f;, and 811{,/&‘)fp have the same
orbital integrals.

In [GKM], the g is on the right of the K (and not on the left), and 5;(115) appears in

the formula instead of 5}3/(1/), but it is easy to see that their proof adapts to the case

considered here. There are obvious variants of this lemma obtained by replacing
Ay with A% or @, where p is a prime number.

Remark 1.7.5 The above lemma implies in particular that the function y —
O, (fm) on M(A ) has its support contained in a set of the form ), cpa ,, m Xm~t,
where X is a compact subset of M(A r), because the support of y — O, (fm) is
contained in the union of the conjugates of K, (%), for 4 in a system of representa-
tives of the finite set P(A 1) \ G(A y)/K’. Moreover, if g = 1, then we may assume
that X is a finite union of compact subgroups of M(A (), that are neat if K is neat
(because the K, (/) are subgroups of M(A f) in that case).





