
Copyrighted Material

Chapter One

Numerical Algorithms

The word “algorithm” derives from the name of the Per­
sian mathematician (Abu Ja’far Muhammad ibn Musa) Al-
Khwarizmi who lived from about 790 CE to about 840 CE.
He wrote a book, Hisab al-jabr w’al-muqabala, that also
named the subject “algebra.”

Numerical analysis is the subject which studies algorithms for computing √
expressions defined with real numbers. The square-root y is an example of
such an expression; we evaluate this today on a calculator or in a computer

2program as if it were as simple as y . It is numerical analysis that has
made this possible, and we will study how this is done. But in doing so,
we will see that the same approach applies broadly to include functions that
cannot be named, and it even changes the nature of fundamental questions
in mathematics, such as the impossibility of finding expressions for roots of
order higher than 4.

There are two different phases to address in numerical analysis:

• the development of algorithms and

• the analysis of algorithms.

These are in principle independent activities, but in reality the development
of an algorithm is often guided by the analysis of the algorithm, or of a
simpler algorithm that computes the same thing or something similar.

There are three characteristics of algorithms using real numbers that are
in conflict to some extent:

• the accuracy (or consistency) of the algorithm,

• the stability of the algorithm, and

• the effects of finite-precision arithmetic (a.k.a. round-off error).

The first of these just means that the algorithm approximates the desired
quantity to any required accuracy under suitable restrictions. The second
means that the behavior of the algorithm is continuous with respect to the
parameters of the algorithm. The third topic is still not well understood
at the most basic level, in the sense that there is not a well-established
mathematical model for finite-precision arithmetic. Instead, we are forced
to use crude upper bounds for the behavior of finite-precision arithmetic

2

Copyrighted Material

CHAPTER 1

that often lead to overly pessimistic predictions about its effects in actual
computations.

We will see that in trying to improve the accuracy or efficiency of a sta­
ble algorithm, one is often led to consider algorithms that turn out to be
unstable and therefore of minimal (if any) value. These various aspects of
numerical analysis are often intertwined, as ultimately we want an algorithm
that we can analyze rigorously to ensure it is effective when using computer
arithmetic.

The efficiency of an algorithm is a more complicated concept but is often
the bottom line in choosing one algorithm over another. It can be related
to all of the above characteristics, as well as to the complexity of the algo­
rithm in terms of computational work or memory references required in its
implementation.

Another central theme in numerical analysis is adaptivity. This means
that the computational algorithm adapts itself to the data of the problem
being solved as a way to improve efficiency and/or stability. Some adap­
tive algorithms are quite remarkable in their ability to elicit information
automatically about a problem that is required for more efficient solution.

We begin with a problem from antiquity to illustrate each of these com­
ponents of numerical analysis in an elementary context. We will not always
disentangle the different issues, but we hope that the differing components
will be evident.

1.1 FINDING ROOTS

People have been computing roots for millennia. Evidence exists [64] that
the Babylonians, who used base-60 arithmetic, were able to approximate

√ 24 51 10
2 ≈ 1 + + + (1.1)

60 602 603

nearly 4000 years ago. By the time of Heron1 a method to compute square-
roots was established [26] that we recognize now as the Newton-Raphson-
Simpson method (see section 2.2.1) and takes the form of a repeated iteration

x ← 1 (x + y/x), (1.2) 2

where the backwards arrow ← means assignment in algorithms. That is,
once the computation of the expression on the right-hand side of the arrow
has been completed, a new value is assigned to the variable x. Once that
assignment is completed, the computation on the right-hand side can be
redone with the new x.

The algorithm (1.2) is an example of what is known as fixed-point iteration,
in which one hopes to find a fixed point, that is, an x where the iteration
quits changing. A fixed point is thus a point x where

1 x = (x + y/x). (1.3) 2

1A.k.a. Hero, of Alexandria, who lived in the 1st century CE.

Copyrighted Material

NUMERICAL ALGORITHMS 3

More precisely, x is a fixed point x = f(x) of the function

1f(x) = (x + y/x), (1.4) 2

defined, say, for x �= 0. If we rearrange terms in (1.3), we find x = y/x, or
2 2x = y. Thus a fixed point as defined in (1.3) is a solution of x = y, so that √
x = ± y.

To describe actual implementations of these algorithms, we choose the
scripting syntax implemented in the system octave. As a programming lan­
guage, this has some limitations, but its use is extremely widespread. In
addition to the public domain implementation of octave, a commercial in­
terpreter (which predates octave) called Matlab is available. However, all
computations presented here were done in octave.

We can implement (1.2) in octave in two steps as follows. First, we define
the function (1.4) via the code

function x=heron(x,y)

x=.5*(x+y/x);

To use this function, you need to start with some initial guess, say, x = 1,
which is written simply as

x=1

(Writing an expression with and without a semicolon at the end controls
whether the interpreter prints the result or not.) But then you simply iterate:

x=heron(x,y)

until x (or the part you care about) quits changing. The results of doing so
are given in table 1.1.

We can examine the accuracy by a simple code

function x=errheron(x,y)

for i=1:5

x=heron(x,y);

errheron=x-sqrt(y)

end

We show in table 1.1 the results of these computations in the case y = 2.
This algorithm seems to “home in” on the solution. We will see that the
accuracy doubles at each step.

1.1.1 Relative versus absolute error

We can require the accuracy of an algorithm to be based on the size of the
answer. For example, we might want the approximation x̂ of a root x to be
small relative to the size of x:

x̂
= 1 + δ, (1.5)

x

4

2 approximation absolute error
1.50000000000000
1.41666666666667
1.41421568627451
1.41421356237469
1.41421356237309

8.5786e-02
2.4531e-03
2.1239e-06
1.5947e-12

-2.2204e-16

Copyrighted Material

CHAPTER 1

√

Table 1.1 Results of experiments with the Heron algorithm applied to approxi­√
mate 2 using the algorithm (1.2) starting with x = 1. The boldface
indicates the leading incorrect digit. Note that the number of correct
digits essentially doubles at each step.

where δ satisfies some fixed tolerance, e.g., |δ| ≤ E. Such a requirement is
in keeping with the model we will adopt for floating-point operations (see
(1.31) and section 18.1).

We can examine the relative accuracy by the simple code

function x=relerrher(x,y)

for i=1:6

x=heron(x,y);

errheron=(x/sqrt(y))-1

end

We leave as exercise 1.2 comparison of the results produced by the above
code relerrher with the absolute errors presented in table 1.1.

1.1.2 Scaling Heron’s algorithm

Before we analyze how Heron’s algorithm (1.2) works, let us enhance it by a
prescaling. To begin with, we can suppose that the number y whose square

1
2

1
2root we seek lies in the interval [, 2]. If y < or y > 2, then we make the

transformation

ỹ = 4k y (1.6)
√ √
ỹ = 2k1

2to get ỹ ∈ [, 2], for some integer k. And of course By scaling yy.
in this way, we limit the range of inputs that the algorithm must deal with. √

In table 1.1, we showed the absolute error for approximating 2, and in √ V
1
2exercise 1.2 the relative errors for approximating 2 and are explored.

1
2It turns out that the maximum errors for the interval [, 2] occur at the ends

of the interval (exercise 1.3). Thus five iterations of Heron, preceded by the √
scaling (1.6), are sufficient to compute y to 16 decimal places.

Scaling provides a simple example of adaptivity for algorithms for finding
roots. Without scaling, the global performance (section 1.2.2) would be quite
different.

5

Copyrighted Material

NUMERICAL ALGORITHMS

1.2 ANALYZING HERON’S ALGORITHM

As the name implies, a major objective of numerical analysis is to analyze
the behavior of algorithms such as Heron’s iteration (1.2). There are two
questions one can ask in this regard. First, we may be interested in the local
behavior of the algorithm assuming that we have a reasonable start near
the desired root. We will see that this can be done quite completely, both
in the case of Heron’s iteration and in general for algorithms of this type
(in chapter 2). Second, we may wonder about the global behavior of the
algorithm, that is, how it will respond with arbitrary starting points. With
the Heron algorithm we can give a fairly complete answer, but in general
it is more complicated. Our point of view is that the global behavior is
really a different subject, e.g., a study in dynamical systems. We will see
that techniques like scaling (section 1.1.2) provide a basis to turn the local
analysis into a convergence theory.

1.2.1 Local error analysis

Since Heron’s iteration (1.2) is recursive in nature, it it natural to expect that
the errors can be expressed recursively as well. We can write an algebraic
expression for Heron’s iteration (1.2) linking the error at one iteration to the
error at the next. Thus define

1
2 (xn + y/xn), (1.7) xn+1 =

√
and let en = xn − x = xn − Then by (1.7) and (1.3), y.

1
2

1
2en+1 = xn+1 − x = (xn + y/xn)− (x + y/x)

(
y(x − xn)

)
en +

xxn

1
2

1
2(en + y/xn − y/x)= =

(1.8)
(

xen

) (
x
)

2e1
2

1
2

1
2

n− 1−= en = en = .
xn xn xn

If we are interested in the relative error,

ên =
en

x
=
xn − x
x

=
xn

x
− 1, (1.9)

then (1.8) becomes

2xê
(1 + ên)

−1 2 ê .n
1
2

1
2

n ên+1 = (1.10) =
xn

Thus we see that

the error at each step is proportional to
the square of the error at the previous step;

for the relative error, the constant of proportionality tends rapidly to 1
2 . In

(2.20), we will see that this same result can be derived by a general technique.

6

Copyrighted Material

CHAPTER 1

1.2.2 Global error analysis

In addition, (1.10) implies a limited type of global convergence property, at √
least for xn > x = y. In that case, (1.10) gives

2 2
1 n 1 n|ên+1| =

ê ê ≤ 1 ên. (1.11) = 2 2 2|1 + ên| 1 + ên

Thus the relative error is reduced by a factor smaller than 1 at each iteration, 2
no matter how large the initial error may be. Unfortunately, this type of
global convergence property does not hold for many algorithms. We can
illustrate what can go wrong in the case of the Heron algorithm when xn <√
x = y.

Suppose for simplicity that y = 1, so that also x = 1, so that the relative
error is ên = xn − 1, and therefore (1.10) implies that

(1− xn)2 1 ên+1 = . (1.12) 2 xn

As xn → 0, ên+1 →∞, even though |ên| < 1. Therefore, convergence is not
truly global for the Heron algorithm.

What happens if we start with x0 near zero? We obtain x1 near ∞.√
From then on, the iterations satisfy xn > y, so the iteration is ultimately
convergent. But the number of iterations required to reduce the error below
a fixed error tolerance can be arbitrarily large depending on how small x0 is.
By the same token, we cannot bound the number of required iterations for
arbitrarily large x0. Fortunately, we will see that it is possible to choose good
starting values for Heron’s method to avoid this potential bad behavior.

1.3 WHERE TO START

With any iterative algorithm, we have to start the iteration somewhere, and
this choice can be an interesting problem in its own right. Just like the
initial scaling described in section 1.1.2, this can affect the performance of
the overall algorithm substantially.

For the Heron algorithm, there are various possibilities. The simplest is
just to take x0 = 1, in which case

1 1
ê0 = − 1 = √ − 1. (1.13)

x y

This gives

2(
1

)2
(x − 1)1 2 1 1 ê1 = xê = x − 1 = (1.14) 2 0 2 2 .

x x

We can use (1.14) as a formula for ê1 as a function of x (it is by definition
a function of y = x2); then we see that

ê1(x) = ê1(1/x) (1.15)

http:use(1.14
http:andtherefore(1.10
http:case,(1.10
http:addition,(1.10

7

Copyrighted Material

NUMERICAL ALGORITHMS

by comparing the rightmost two terms in (1.14). Note that the maximum
of ê1(x) on [2−1/2 , 21/2] occurs at the ends of the interval, and

√ √ (2− 1)2 √
1 3√ =ê1(2) = 2− 1 ≈ 0.060660 . (1.16) 2 42

Thus the simple starting value x0 = 1 is remarkably effective. Nevertheless,
let us see if we can do better.

1.3.1 Another start

Another idea to start the iteration is to make an approximation to the square-
root function given the fact that we always have y ∈ [1 , 2] (section 1.1.2). 2
Since this means that y is near 1, we can write y = 1 + t (i.e., t = y − 1),
and we have √

1 x = y = 1 + t = 1 +
√

t + O(t2)2 (1.17)
1=1 + 1 (y − 1) +O(t2) = (y + 1) + O(t2).2 2

Thus we get the approximation x ≈ 1 (y + 1) as a possible starting guess: 2

1 x0 = (y + 1). (1.18) 2

But this is the same as x1 if we had started with x0 = 1. Thus we have not
really found anything new.

1.3.2 The best start

Our first attempt (1.18) based on a linear approximation to the square-root
did not produce a new concept since it gives the same result as starting with
a constant guess after one iteration. The approximation (1.18) corresponds √
to the tangent line of the graph of y at y = 1, but this may not be the
best affine approximation to a function on an interval. So let us ask the
question, What is the best approximation to

√
y on the interval [12 , 2] by

a linear polynomial? This problem is a miniature of the questions we will
address in chapter 12.

The general linear polynomial is of the form

f(y) = a + by. (1.19)

If we take x0 = f(y), then the relative error ê0 = ê0(y) is
√ √

x0 − y a + by − y a √
ê0(y) = √ = √ = √ + b y − 1. (1.20)

y y y

Let us write eab(y) = ê0(y) to be precise. We seek a and b such that the
maximum of |eab(y)| over y ∈ [1 , 2] is minimized. 2

Fortunately, the functions
a √

eab(y) = √ + b y − 1 (1.21)
y

have a simple structure. As always, it is helpful to compute the derivative:
< −3/2 1 1 −3/2− 1 e = ay + by−1/2 = (−a + by)y . (1.22) ab(y) 2 2 2

http:approximation(1.18
http:firstattempt(1.18
http:therightmosttwotermsin(1.14

8

Copyrighted Material

CHAPTER 1

< < <Thus e (y) = 0 for y = a/b; further, e (y) > 0 for y > a/b, and e (y) < 0ab ab ab

for y < a/b. Therefore, eab has a minimum at y = a/b and is strictly
increasing as we move away from that point in either direction. Thus we
have proved that

√
min eab = min eba = eab(a/b) = 2 ab − 1. (1.23)

1
2 , 2] will be at the ends of the interval

or at y =
Thus the maximum values of |eab| on [

a/b if a/b ∈ [12 , 2]. Moreover, the best value of eab(a/b) will be
negative (exercise 1.10). Thus we consider the three values

a √
eab(2) = √ + b 2− 1

2
√ b (1.24) √ − 11

2eab() = a 2 +
2 √

−eab(a/b) =1 − 2 ab.

Note that eab(2) = eba(1/2). Therefore, the optimal values of a and b must
be the same: a = b (exercise 1.11). Moreover, the minimum value of eab

must be minus the maximum value on the interval (exercise 1.12). Thus the
optimal value of a = b is characterized by

a =
()−1

. (1.25)
√ √

3
2

3
42− 1 = 1− 2a =⇒ 2 + 1a

Recall that the simple idea of starting the Heron algorithm with x0 = 1
yielded an error

√
3
4|ê1| ≤ γ = 2− 1, (1.26)

1
2and that this was equivalent to choosing a = in the current scheme. Note

1
2that the optimal a = 1/(γ + 2), only slightly less than , and the resulting

minimum value of the maximum of |eaa| is
2 γ

1− 2a = 1− = . (1.27)
γ + 2 γ + 2

1
2Thus the optimal value of a reduces the previous error of γ (for a =) by

1
2nearly a factor of , despite the fact that the change in a is quite small. The

benefit of using the better initial guess is of course squared at each iteration,

so the reduced error is nearly smaller by a factor of 2−2k

after k iterations
of Heron. We leave as exercise 1.13 the investigation of the effect of using
this optimal starting place in the Heron algorithm.

1.4 AN UNSTABLE ALGORITHM

Heron’s algorithm has one drawback in that it requires division. One can
imagine that a simpler algorithm might be possible such as

x ← x + x 2 − y. (1.28)

http:ontheinterval(exercise1.12
http:negative(exercise1.10

9

Copyrighted Material

NUMERICAL ALGORITHMS

n 0 1 2 3 4 5
xn 1.5 1.75 2.81 8.72 82.8 6937.9
n 6 7 8 9 10 11
xn 5×107 2×1015 5×1030 3×1061 8×10122 7×10245

√
Table 1.2 Unstable behavior of the iteration (1.28) for computing 2.

Before experimenting with this algorithm, we note that a fixed point

x = x + x 2 − y (1.29)

2does have the property that x = y, as desired. Thus we can assert the
accuracy of the algorithm (1.28), in the sense that any fixed point will solve
the desired problem. However, it is easy to see that the algorithm is not
stable, in the sense that if we start with an initial guess with any sort of
error, the algorithm fails. table 1.2 shows the results of applying (1.28)
starting with x0 = 1.5. What we see is a rapid movement away from the
solution, followed by a catastrophic blowup (which eventually causes failure
in a fixed-precision arithmetic system, or causes the computer to run out of
memory in a variable-precision system). The error is again being squared, as
with the Heron algorithm, but since the error is getting bigger rather than
smaller, the algorithm is useless. In section 2.1 we will see how to diagnose
instability (or rather how to guarantee stability) for iterations like (1.28).

1.5 GENERAL ROOTS: EFFECTS OF FLOATING-POINT

So far, we have seen no adverse effects related to finite-precision arithmetic.
This is common for (stable) iterative methods like the Heron algorithm.
But now we consider a more complex problem in which rounding plays a
dominant role.

Suppose we want to compute the roots of a general quadratic equation
x2 + 2bx + c = 0, where b < 0, and we chose the algorithm

x ← −b +
�
b2 − c. (1.30)

Note that we have assumed that we can compute the square-root function
as part of this algorithm, say, by Heron’s method.

Unfortunately, the simple algorithm in (1.30) fails if we have c = E2b2 (it
returns x = 0) as soon as E2 = c/b2 is small enough that the floating-point
representation of 1 − E2 is 1. For any (fixed) finite representation of real
numbers, this will occur for some E > 0.

We will consider floating-point arithmetic in more detail in section 18.1,
but the simple model we adopt says that the result of computing a binary
operator ⊕ such as +, −, /, or ∗ has the property that

f£(a ⊕ b) = (a ⊕ b)(1 + δ), (1.31)

http:algorithmin(1.30
http:foriterationslike(1.28
http:Table1.2Unstablebehavioroftheiteration(1.28

10

Copyrighted Material

CHAPTER 1

where |δ| ≤ E, where E > 0 is a parameter of the model.2 However, this means
that a collection of operations could lead to catastrophic cancellation, e.g.,

1 1f£(f£(1 + E)− 1) = 0 and not E.2 2
We can see the behavior in some simple codes. But first, let us simplify the

problem further so that we have just one parameter to deal with. Suppose
that the equation to be solved is of the form

x 2 − 2bx + 1 = 0. (1.32)

That is, we switch b to −b and set c = 1. In this case, the two roots are
multiplicative inverses of each other. Define

b2 − 1.x± = b ±
�

(1.33)

Then x− = 1/x+.
There are various possible algorithms. We could use one of the two formu­√ √

las x± = b ± b2 − 1 directly. More precisely, let us write x̃± ≈ b ± b2 − 1
to indicate that we implement this in floating-point. Correspondingly, there
is another pair of algorithms that start by computing x̃= and then define,
say, x̂+ ≈ 1/x̃−. A similar algorithm could determine x̂− ≈ 1/x̃+.

All four of these algorithms will have different behaviors. We expect that
the behaviors of the algorithms for computing x̃− and x̂− will be dual in
some way to those for computing x̃+ and x̂+, so we consider only the first
pair.

First, the function minus implements the x̃− square-root algorithm:

function x=minus(b)

% solving = 1-2bx +x^2

x=b-sqrt(b^2-1);

To know if it is getting the right answer, we need another function to check
the answer:

function error=check(b,x)

error = 1-2*b*x +x^2;

To automate the process, we put the two together:

function error=chekminus(b)

x=minus(b);

error=check(b,x)

For example, when b = 106, we find the error is −7.6× 10−6 . As b increases
further, the error increases, ultimately leading to complete nonsense. For
this reason, we consider an alternative algorithm suitable for large b.

The algorithm for x̂− is given by

2The notation fi is somewhat informal. It would be more precise to write a ⊕b b instead
of fi(a ⊕ b) since the operator is modified by the effect of rounding.

Copyrighted Material

NUMERICAL ALGORITHMS 11

function x=plusinv(b)

% solving = 1-2bx +x^2

y=b+sqrt(b^2-1);

x=1/y;

Similarly, we can check the accuracy of this computation by the code

function error=chekplusinv(b)

x=plusinv(b);

error=check(b,x)

Now when b = 106, we find the error is −2.2 × 10−17 . And the bigger b
becomes, the more accurate it becomes.

Here we have seen that algorithms can have data-dependent behavior with
regard to the effects of finite-precision arithmetic. We will see that there
are many algorithms in numerical analysis with this property, but suitable
analysis will establish conditions on the data that guarantee success.

1.6 EXERCISES

Exercise 1.1 How accurate is the approximation (1.1) if it is expressed as
a decimal approximation (how many digits are correct)?

Exercise 1.2 Run the code relerrher starting with x = 1 and y = 2 to √
approximate 2. Compare the results with table 1.1. Also run the code with

1 x = 1 and y = and compare the results with the previous case. Explain 2
what you find.

Exercise 1.3 Show that the maximum relative error in Heron’s algorithm
 √
for approximating y for y ∈ [1/M, M], for a fixed number of iterations
and starting with x0 = 1, occurs at the ends of the interval: y = 1/M and
y = M . (Hint: consider (1.10) and (1.14) and show that the function

φ(x) = 1 2(1 + x)−1 x (1.34) 2

plays a role in each. Show that φ is increasing on the interval [0, ∞[.)

Exercise 1.4 It is sometimes easier to demonstrate the relative accuracy of
an approximation x̂ to x by showing that

|x − x̂| ≤ E<|x̂| (1.35)

instead of verifying (1.5) directly. Show that if (1.35) holds, then (1.5) holds
with E = E</(1− E<).

Exercise 1.5 There is a simple generalization to Heron’s algorithm for find­
ing kth roots as follows:

x ←
1
((k − 1)x + y/xk−1). (1.36)

k
kShow that, if this converges, it converges to a solution of x = y. Examine

the speed of convergence both computationally and by estimating the error
algebraically.

http:Showthatif(1.35
http:and(1.14
http:consider(1.10

12

Copyrighted Material

CHAPTER 1

Exercise 1.6 Show that the error in Heron’s algorithm for approximating √
y satisfies

√ √
xn − y

(
x0 − y

)2n

√ = √ (1.37)
xn + y x0 + y

for n ≥ 1. Note that the denominator on the left-hand side of (1.37) con­√
verges rapidly to 2 y.

Exercise 1.7 We have implicitly been assuming that we were attempting to
compute a positive square-root with Heron’s algorithm, and thus we always
started with a positive initial guess. If we give zero as an initial guess, there
is immediate failure because of division by zero. But what happens if we start

2with a negative initial guess? (Hint: there are usually two roots to x = y,
one of which is negative.)

Exercise 1.8 Consider the iteration
2 x ← 2x − yx (1.38)

and show that, if it converges, it converges to x = 1/y. Note that the algo­
rithm does not require a division. Determine the range of starting values x0

for which this will converge. What sort of scaling (cf. section 1.1.2) would
be appropriate for computing 1/y before starting the iteration?

Exercise 1.9 Consider the iteration
3 x ← 3 x − 1 yx (1.39) 2 2 √

and show that, if this converges, it converges to x = 1/ y. Note that this √
algorithm does not require a division. The computation of 1/ y appears in
the Cholesky algorithm in (4.12).

√
Exercise 1.10 Suppose that a + by is the best linear approximation to y
in terms of relative error on [1 , 2]. Prove that the error expression eab has 2
to be negative at its minimum. (Hint: if not, you can always decrease a to
make eab(2) and eab(

1) smaller without increasing the maximum value of 2
|eab|.)

√
Exercise 1.11 Suppose that a + by is the best linear approximation to y
in terms of relative error on [12 , 2]. Prove that a = b.

√
Exercise 1.12 Suppose that a + ay is the best linear approximation to y
in terms of relative error on [1 , 2]. Prove that the error expression 2

eaa(1) = −eaa(2). (1.40)

(Hint: if not, you can always decrease a to make eaa(2) and eaa(1) smaller 2
without increasing the maximum value of |eab|.)

Exercise 1.13 Consider the effect of the best starting value of a in (1.25)
on the Heron algorithm. How many iterations are required to get 16 digits
of accuracy? And to obtain 32 digits of accuracy?

http:algorithmin(4.12

13

Copyrighted Material

NUMERICAL ALGORITHMS

Exercise 1.14 Change the function minus for computing x̃− and the func­
tion plusinv for computing x̂− to functions for computing x̃+ (call that
function plus) and x̂+ (call that function minusinv). Use the check func­
tion to see where they work well and where they fail. Compare that with the
corresponding behavior for minus and plusinv.

Exercise 1.15 The iteration (1.28) can be implemented via the function

function y =sosimpl(x,a)

y=x+x^2-a;

Use this to verify that sosimpl(1,1) is indeed 1, but if we start with

x=1.000000000001

and then repeatedly apply x=sosimpl(x,1), the result ultimately diverges.

1.7 SOLUTIONS

1Solution of Exercise 1.3. The function φ(x) = (1+x)−1x2 is increasing 2
on the interval [0, ∞[since

2 22x(1 + x)− x 2x + x1 1φ<(x) = = > 0 (1.41) 2 2(1 + x)2 (1 + x)2

for x > 0. The expression (1.10) says that

ên+1 = φ(ên), (1.42)

and (1.14) says that

ê1 = φ(x − 1). (1.43)

Thus

ê2 = φ(φ(x − 1)). (1.44)

By induction, define

φ[n+1](t) = φ(φ[n](t)), (1.45)

where φ[1](t) = φ(t) for all t. Then, by induction,

ên = φ[n](x − 1) (1.46)

for all n ≥ 1. Since the composition of increasing functions is increasing, each
φ[n] is increasing, by induction. Thus ên is maximized when x is maximized,
at least for x > 1. Note that

φ(x − 1) = φ((1/x) − 1), (1.47)

so we may also write

ên = φ[n]((1/x)− 1). (1.48)

http:and(1.14
http:expression(1.10
http:Theiteration(1.28

14

Copyrighted Material

CHAPTER 1

Thus the error is symmetric via the relation

ên(x) = ên(1/x). (1.49)

Thus the maximal error on an interval [1/M, M] occurs simultaneously at
1/M and M .

Solution of Exercise 1.6. Define dn = xn +x. Then (1.37) in exercise 1.6
is equivalent to the statement that

en

(
e0
)2n

= . (1.50)
dn d0

Thus we compute

1
2

1
2

1
2dn+1 = xn+1 + x = (xn + y/xn) + (x + y/x)

)
(dn + y/xn + y/x)=

(
y(x + xn)

)
dn +

xxn

((
xdn

)
dn +

xn

ydn1
2

1
2

1
2dn += = =

xxn (
x
)

1 +
xn

)
2dn

xn

(1.51)

x1
2

1
2

1
2dn dn = = = .

(
xn +

xn

1
2

2
nRecall that (1.8) says that en+1 = /xn, so dividing by (1.51) yields e

en+1

(
en

)2

= (1.52)
dn+1 dn

for any n ≥ 0. A simple induction on n yields (1.50), as required.

http:yields(1.50

