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Chapter One
 

Numerical Algorithms 

The word “algorithm” derives from the name of the Per­
sian mathematician (Abu Ja’far Muhammad ibn Musa) Al-
Khwarizmi who lived from about 790 CE to about 840 CE. 
He wrote a book, Hisab al-jabr w’al-muqabala, that also 
named the subject “algebra.” 

Numerical analysis is the subject which studies algorithms for computing √ 
expressions defined with real numbers. The square-root y is an example of 
such an expression; we evaluate this today on a calculator or in a computer 

2program as if it were as simple as y . It is numerical analysis that has 
made this possible, and we will study how this is done. But in doing so, 
we will see that the same approach applies broadly to include functions that 
cannot be named, and it even changes the nature of fundamental questions 
in mathematics, such as the impossibility of finding expressions for roots of 
order higher than 4. 

There are two different phases to address in numerical analysis: 

• the development of algorithms and 

• the analysis of algorithms. 

These are in principle independent activities, but in reality the development 
of an algorithm is often guided by the analysis of the algorithm, or of a 
simpler algorithm that computes the same thing or something similar. 

There are three characteristics of algorithms using real numbers that are 
in conflict to some extent: 

• the accuracy (or consistency) of the algorithm, 

• the stability of the algorithm, and 

• the effects of finite-precision arithmetic (a.k.a. round-off error). 

The first of these just means that the algorithm approximates the desired 
quantity to any required accuracy under suitable restrictions. The second 
means that the behavior of the algorithm is continuous with respect to the 
parameters of the algorithm. The third topic is still not well understood 
at the most basic level, in the sense that there is not a well-established 
mathematical model for finite-precision arithmetic. Instead, we are forced 
to use crude upper bounds for the behavior of finite-precision arithmetic 
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that often lead to overly pessimistic predictions about its effects in actual 
computations. 

We will see that in trying to improve the accuracy or efficiency of a sta­
ble algorithm, one is often led to consider algorithms that turn out to be 
unstable and therefore of minimal (if any) value. These various aspects of 
numerical analysis are often intertwined, as ultimately we want an algorithm 
that we can analyze rigorously to ensure it is effective when using computer 
arithmetic. 

The efficiency of an algorithm is a more complicated concept but is often 
the bottom line in choosing one algorithm over another. It can be related 
to all of the above characteristics, as well as to the complexity of the algo­
rithm in terms of computational work or memory references required in its 
implementation. 

Another central theme in numerical analysis is adaptivity. This means 
that the computational algorithm adapts itself to the data of the problem 
being solved as a way to improve efficiency and/or stability. Some adap­
tive algorithms are quite remarkable in their ability to elicit information 
automatically about a problem that is required for more efficient solution. 

We begin with a problem from antiquity to illustrate each of these com­
ponents of numerical analysis in an elementary context. We will not always 
disentangle the different issues, but we hope that the differing components 
will be evident. 

1.1 FINDING ROOTS 

People have been computing roots for millennia. Evidence exists [64] that 
the Babylonians, who used base-60 arithmetic, were able to approximate 

√ 24 51 10 
2 ≈ 1 + + + (1.1) 

60 602 603 

nearly 4000 years ago. By the time of Heron1 a method to compute square-
roots was established [26] that we recognize now as the Newton-Raphson-
Simpson method (see section 2.2.1) and takes the form of a repeated iteration 

x ← 1 (x + y/x), (1.2) 2

where the backwards arrow ← means assignment in algorithms. That is, 
once the computation of the expression on the right-hand side of the arrow 
has been completed, a new value is assigned to the variable x. Once that 
assignment is completed, the computation on the right-hand side can be 
redone with the new x. 

The algorithm (1.2) is an example of what is known as fixed-point iteration, 
in which one hopes to find a fixed point, that is, an x where the iteration 
quits changing. A fixed point is thus a point x where 

1 x = (x + y/x). (1.3) 2

1A.k.a. Hero, of Alexandria, who lived in the 1st century CE. 
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More precisely, x is a fixed point x = f(x) of the function 

1f(x) = (x + y/x), (1.4) 2

defined, say, for x �= 0. If we rearrange terms in (1.3), we find x = y/x, or 
2 2x = y. Thus a fixed point as defined in (1.3) is a solution of x = y, so that √ 
x = ± y. 

To describe actual implementations of these algorithms, we choose the 
scripting syntax implemented in the system octave. As a programming lan­
guage, this has some limitations, but its use is extremely widespread. In 
addition to the public domain implementation of octave, a commercial in­
terpreter (which predates octave) called Matlab is available. However, all 
computations presented here were done in octave. 

We can implement (1.2) in octave in two steps as follows. First, we define 
the function (1.4) via the code 

function x=heron(x,y)
 

x=.5*(x+y/x);
 

To use this function, you need to start with some initial guess, say, x = 1, 
which is written simply as 

x=1
 

(Writing an expression with and without a semicolon at the end controls 
whether the interpreter prints the result or not.) But then you simply iterate: 

x=heron(x,y)
 

until x (or the part you care about) quits changing. The results of doing so 
are given in table 1.1. 

We can examine the accuracy by a simple code 

function x=errheron(x,y)
 

for i=1:5
 

x=heron(x,y);
 

errheron=x-sqrt(y)
 

end
 

We show in table 1.1 the results of these computations in the case y = 2. 
This algorithm seems to “home in” on the solution. We will see that the 
accuracy doubles at each step. 

1.1.1 Relative versus absolute error 

We can require the accuracy of an algorithm to be based on the size of the 
answer. For example, we might want the approximation x̂ of a root x to be 
small relative to the size of x: 

x̂
= 1 + δ, (1.5) 

x 
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2 approximation absolute error 
1.50000000000000 
1.41666666666667 
1.41421568627451 
1.41421356237469 
1.41421356237309 

8.5786e-02 
2.4531e-03 
2.1239e-06 
1.5947e-12 

-2.2204e-16 
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√ 

Table 1.1 Results of experiments with the Heron algorithm applied to approxi­√ 
mate 2 using the algorithm (1.2) starting with x = 1. The boldface 
indicates the leading incorrect digit. Note that the number of correct 
digits essentially doubles at each step. 

where δ satisfies some fixed tolerance, e.g., |δ| ≤ E. Such a requirement is 
in keeping with the model we will adopt for floating-point operations (see 
(1.31) and section 18.1). 

We can examine the relative accuracy by the simple code 

function x=relerrher(x,y)
 

for i=1:6
 

x=heron(x,y);
 

errheron=(x/sqrt(y))-1
 

end
 

We leave as exercise 1.2 comparison of the results produced by the above 
code relerrher with the absolute errors presented in table 1.1. 

1.1.2 Scaling Heron’s algorithm 

Before we analyze how Heron’s algorithm (1.2) works, let us enhance it by a 
prescaling. To begin with, we can suppose that the number y whose square 

1
2

1
2root we seek lies in the interval [ , 2]. If y < or y > 2, then we make the 

transformation 

ỹ = 4k y (1.6) 
√ √ 
ỹ = 2k1

2to get ỹ ∈ [ , 2], for some integer k. And of course By scaling yy. 
in this way, we limit the range of inputs that the algorithm must deal with. √ 

In table 1.1, we showed the absolute error for approximating 2, and in √ V
1
2exercise 1.2 the relative errors for approximating 2 and are explored. 

1
2It turns out that the maximum errors for the interval [ , 2] occur at the ends 

of the interval (exercise 1.3). Thus five iterations of Heron, preceded by the √ 
scaling (1.6), are sufficient to compute y to 16 decimal places. 

Scaling provides a simple example of adaptivity for algorithms for finding 
roots. Without scaling, the global performance (section 1.2.2) would be quite 
different. 
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1.2 ANALYZING HERON’S ALGORITHM 

As the name implies, a major objective of numerical analysis is to analyze 
the behavior of algorithms such as Heron’s iteration (1.2). There are two 
questions one can ask in this regard. First, we may be interested in the local 
behavior of the algorithm assuming that we have a reasonable start near 
the desired root. We will see that this can be done quite completely, both 
in the case of Heron’s iteration and in general for algorithms of this type 
(in chapter 2). Second, we may wonder about the global behavior of the 
algorithm, that is, how it will respond with arbitrary starting points. With 
the Heron algorithm we can give a fairly complete answer, but in general 
it is more complicated. Our point of view is that the global behavior is 
really a different subject, e.g., a study in dynamical systems. We will see 
that techniques like scaling (section 1.1.2) provide a basis to turn the local 
analysis into a convergence theory. 

1.2.1 Local error analysis 

Since Heron’s iteration (1.2) is recursive in nature, it it natural to expect that 
the errors can be expressed recursively as well. We can write an algebraic 
expression for Heron’s iteration (1.2) linking the error at one iteration to the 
error at the next. Thus define 

1
2 (xn + y/xn), (1.7) xn+1 = 

√ 
and let en = xn − x = xn − Then by (1.7) and (1.3), y. 

1
2

1
2en+1 = xn+1 − x = (xn + y/xn)− (x + y/x) 

(
y(x − xn)

)
en + 

xxn 

1
2

1
2(en + y/xn − y/x)= =

(1.8) 
( 

xen 

) ( 
x 
)

2e1
2 

1
2

1
2 

n− 1−= en = en = . 
xn xn xn 

If we are interested in the relative error, 

ên = 
en 

x 
= 
xn − x 
x 

= 
xn 

x 
− 1, (1.9) 

then (1.8) becomes 

2xê
(1 + ên)

−1 2 ê .n
1
2 

1
2

n ên+1 = (1.10) = 
xn 

Thus we see that 

the error at each step is proportional to 
the square of the error at the previous step; 

for the relative error, the constant of proportionality tends rapidly to 1
2 . In 

(2.20), we will see that this same result can be derived by a general technique. 
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1.2.2 Global error analysis 

In addition, (1.10) implies a limited type of global convergence property, at √ 
least for xn > x = y. In that case, (1.10) gives 

2 2 
1 n 1 n|ên+1| = 

ê ê ≤ 1 ên. (1.11) = 2 2 2|1 + ên| 1 + ên 

Thus the relative error is reduced by a factor smaller than 1 at each iteration, 2 
no matter how large the initial error may be. Unfortunately, this type of 
global convergence property does not hold for many algorithms. We can 
illustrate what can go wrong in the case of the Heron algorithm when xn <√ 
x = y. 

Suppose for simplicity that y = 1, so that also x = 1, so that the relative 
error is ên = xn − 1, and therefore (1.10) implies that 

(1− xn)2 1 ên+1 = . (1.12) 2 xn 

As xn → 0, ên+1 →∞, even though |ên| < 1. Therefore, convergence is not 
truly global for the Heron algorithm. 

What happens if we start with x0 near zero? We obtain x1 near ∞.√ 
From then on, the iterations satisfy xn > y, so the iteration is ultimately 
convergent. But the number of iterations required to reduce the error below 
a fixed error tolerance can be arbitrarily large depending on how small x0 is. 
By the same token, we cannot bound the number of required iterations for 
arbitrarily large x0. Fortunately, we will see that it is possible to choose good 
starting values for Heron’s method to avoid this potential bad behavior. 

1.3 WHERE TO START 

With any iterative algorithm, we have to start the iteration somewhere, and 
this choice can be an interesting problem in its own right. Just like the 
initial scaling described in section 1.1.2, this can affect the performance of 
the overall algorithm substantially. 

For the Heron algorithm, there are various possibilities. The simplest is 
just to take x0 = 1, in which case 

1 1 
ê0 = − 1 = √ − 1. (1.13) 

x y 

This gives 

2( 
1 

)2 
(x − 1)1 2 1 1 ê1 = xê = x − 1 = (1.14) 2 0 2 2 . 

x x 

We can use (1.14) as a formula for ê1 as a function of x (it is by definition 
a function of y = x2); then we see that 

ê1(x) = ê1(1/x) (1.15) 

http:use(1.14
http:andtherefore(1.10
http:case,(1.10
http:addition,(1.10
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by comparing the rightmost two terms in (1.14). Note that the maximum 
of ê1(x) on [2−1/2 , 21/2] occurs at the ends of the interval, and 

√ √ ( 2− 1)2 √ 
1 3√ =ê1( 2) = 2− 1 ≈ 0.060660 . (1.16) 2 42 

Thus the simple starting value x0 = 1 is remarkably effective. Nevertheless, 
let us see if we can do better. 

1.3.1 Another start 

Another idea to start the iteration is to make an approximation to the square-
root function given the fact that we always have y ∈ [ 1 , 2] (section 1.1.2). 2
Since this means that y is near 1, we can write y = 1 + t (i.e., t = y − 1), 
and we have √ 

1 x = y = 1 + t = 1 + 
√ 

t + O(t2)2 (1.17) 
1=1 + 1 (y − 1) +O(t2) = (y + 1) + O(t2).2 2

Thus we get the approximation x ≈ 1 (y + 1) as a possible starting guess: 2

1 x0 = (y + 1). (1.18) 2

But this is the same as x1 if we had started with x0 = 1. Thus we have not 
really found anything new. 

1.3.2 The best start 

Our first attempt (1.18) based on a linear approximation to the square-root 
did not produce a new concept since it gives the same result as starting with 
a constant guess after one iteration. The approximation (1.18) corresponds √ 
to the tangent line of the graph of y at y = 1, but this may not be the 
best affine approximation to a function on an interval. So let us ask the 
question, What is the best approximation to 

√ 
y on the interval [12 , 2] by 

a linear polynomial? This problem is a miniature of the questions we will 
address in chapter 12. 

The general linear polynomial is of the form 

f(y) = a + by. (1.19) 

If we take x0 = f(y), then the relative error ê0 = ê0(y) is 
√ √ 

x0 − y a + by − y a √ 
ê0(y) = √ = √ = √ + b y − 1. (1.20) 

y y y 

Let us write eab(y) = ê0(y) to be precise. We seek a and b such that the 
maximum of |eab(y)| over y ∈ [ 1 , 2] is minimized. 2

Fortunately, the functions 
a √ 

eab(y) = √ + b y − 1 (1.21) 
y 

have a simple structure. As always, it is helpful to compute the derivative: 
< −3/2 1 1 −3/2− 1 e = ay + by−1/2 = (−a + by)y . (1.22) ab(y) 2 2 2

http:approximation(1.18
http:firstattempt(1.18
http:therightmosttwotermsin(1.14
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< < <Thus e (y) = 0 for y = a/b; further, e (y) > 0 for y > a/b, and e (y) < 0ab ab ab

for y < a/b. Therefore, eab has a minimum at y = a/b and is strictly 
increasing as we move away from that point in either direction. Thus we 
have proved that 

√ 
min eab = min eba = eab(a/b) = 2 ab − 1. (1.23) 

1
2 , 2] will be at the ends of the interval 

or at y = 
Thus the maximum values of |eab| on [

a/b if a/b ∈ [12 , 2]. Moreover, the best value of eab(a/b) will be 
negative (exercise 1.10). Thus we consider the three values 

a √ 
eab(2) = √ + b 2− 1 

2 
√ b (1.24) √ − 11

2eab( ) = a 2 + 
2 √ 

−eab(a/b) =1 − 2 ab. 

Note that eab(2) = eba(1/2). Therefore, the optimal values of a and b must 
be the same: a = b (exercise 1.11). Moreover, the minimum value of eab 

must be minus the maximum value on the interval (exercise 1.12). Thus the 
optimal value of a = b is characterized by 

a = 
( )−1 

. (1.25) 
√ √ 

3
2 

3
42− 1 = 1− 2a =⇒ 2 + 1a

Recall that the simple idea of starting the Heron algorithm with x0 = 1 
yielded an error 

√ 
3
4|ê1| ≤ γ = 2− 1, (1.26) 

1
2and that this was equivalent to choosing a = in the current scheme. Note 

1
2that the optimal a = 1/(γ + 2), only slightly less than , and the resulting 

minimum value of the maximum of |eaa| is 
2 γ 

1− 2a = 1− = . (1.27) 
γ + 2 γ + 2 

1
2Thus the optimal value of a reduces the previous error of γ (for a = ) by 

1
2nearly a factor of , despite the fact that the change in a is quite small. The 

benefit of using the better initial guess is of course squared at each iteration, 

so the reduced error is nearly smaller by a factor of 2−2k 

after k iterations 
of Heron. We leave as exercise 1.13 the investigation of the effect of using 
this optimal starting place in the Heron algorithm. 

1.4 AN UNSTABLE ALGORITHM 

Heron’s algorithm has one drawback in that it requires division. One can 
imagine that a simpler algorithm might be possible such as 

x ← x + x 2 − y. (1.28) 

http:ontheinterval(exercise1.12
http:negative(exercise1.10
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n 0 1 2 3 4 5 
xn 1.5 1.75 2.81 8.72 82.8 6937.9 
n 6 7 8 9 10 11 
xn 5×107 2×1015 5×1030 3×1061 8×10122 7×10245 

√ 
Table 1.2 Unstable behavior of the iteration (1.28) for computing 2. 

Before experimenting with this algorithm, we note that a fixed point 

x = x + x 2 − y (1.29) 

2does have the property that x = y, as desired. Thus we can assert the 
accuracy of the algorithm (1.28), in the sense that any fixed point will solve 
the desired problem. However, it is easy to see that the algorithm is not 
stable, in the sense that if we start with an initial guess with any sort of 
error, the algorithm fails. table 1.2 shows the results of applying (1.28) 
starting with x0 = 1.5. What we see is a rapid movement away from the 
solution, followed by a catastrophic blowup (which eventually causes failure 
in a fixed-precision arithmetic system, or causes the computer to run out of 
memory in a variable-precision system). The error is again being squared, as 
with the Heron algorithm, but since the error is getting bigger rather than 
smaller, the algorithm is useless. In section 2.1 we will see how to diagnose 
instability (or rather how to guarantee stability) for iterations like (1.28). 

1.5 GENERAL ROOTS: EFFECTS OF FLOATING-POINT 

So far, we have seen no adverse effects related to finite-precision arithmetic. 
This is common for (stable) iterative methods like the Heron algorithm. 
But now we consider a more complex problem in which rounding plays a 
dominant role. 

Suppose we want to compute the roots of a general quadratic equation 
x2 + 2bx + c = 0, where b < 0, and we chose the algorithm 

x ← −b + 
�
b2 − c. (1.30) 

Note that we have assumed that we can compute the square-root function 
as part of this algorithm, say, by Heron’s method. 

Unfortunately, the simple algorithm in (1.30) fails if we have c = E2b2 (it 
returns x = 0) as soon as E2 = c/b2 is small enough that the floating-point 
representation of 1 − E2 is 1. For any (fixed) finite representation of real 
numbers, this will occur for some E > 0. 

We will consider floating-point arithmetic in more detail in section 18.1, 
but the simple model we adopt says that the result of computing a binary 
operator ⊕ such as +, −, /, or ∗ has the property that 

f£(a ⊕ b) = (a ⊕ b)(1 + δ), (1.31) 

http:algorithmin(1.30
http:foriterationslike(1.28
http:Table1.2Unstablebehavioroftheiteration(1.28
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where |δ| ≤ E, where E > 0 is a parameter of the model.2 However, this means 
that a collection of operations could lead to catastrophic cancellation, e.g., 

1 1f£(f£(1 + E)− 1) = 0 and not E.2 2
We can see the behavior in some simple codes. But first, let us simplify the 

problem further so that we have just one parameter to deal with. Suppose 
that the equation to be solved is of the form 

x 2 − 2bx + 1 = 0. (1.32) 

That is, we switch b to −b and set c = 1. In this case, the two roots are 
multiplicative inverses of each other. Define 

b2 − 1.x± = b ± 
�

(1.33) 

Then x− = 1/x+. 
There are various possible algorithms. We could use one of the two formu­√ √ 

las x± = b ± b2 − 1 directly. More precisely, let us write x̃± ≈ b ± b2 − 1 
to indicate that we implement this in floating-point. Correspondingly, there 
is another pair of algorithms that start by computing x̃= and then define, 
say, x̂+ ≈ 1/x̃−. A similar algorithm could determine x̂− ≈ 1/x̃+. 

All four of these algorithms will have different behaviors. We expect that 
the behaviors of the algorithms for computing x̃− and x̂− will be dual in 
some way to those for computing x̃+ and x̂+, so we consider only the first 
pair. 

First, the function minus implements the x̃− square-root algorithm: 

function x=minus(b)
 

% solving = 1-2bx +x^2
 

x=b-sqrt(b^2-1);
 

To know if it is getting the right answer, we need another function to check 
the answer: 

function error=check(b,x)
 

error = 1-2*b*x +x^2;
 

To automate the process, we put the two together: 

function error=chekminus(b)
 

x=minus(b);
 

error=check(b,x)
 

For example, when b = 106, we find the error is −7.6× 10−6 . As b increases 
further, the error increases, ultimately leading to complete nonsense. For 
this reason, we consider an alternative algorithm suitable for large b. 

The algorithm for x̂− is given by 

2The notation fi is somewhat informal. It would be more precise to write a ⊕b b instead 
of fi(a ⊕ b) since the operator is modified by the effect of rounding. 
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function x=plusinv(b)
 

% solving = 1-2bx +x^2
 

y=b+sqrt(b^2-1);
 

x=1/y;
 

Similarly, we can check the accuracy of this computation by the code 

function error=chekplusinv(b)
 

x=plusinv(b);
 

error=check(b,x)
 

Now when b = 106, we find the error is −2.2 × 10−17 . And the bigger b 
becomes, the more accurate it becomes. 

Here we have seen that algorithms can have data-dependent behavior with 
regard to the effects of finite-precision arithmetic. We will see that there 
are many algorithms in numerical analysis with this property, but suitable 
analysis will establish conditions on the data that guarantee success. 

1.6 EXERCISES 

Exercise 1.1 How accurate is the approximation (1.1) if it is expressed as 
a decimal approximation (how many digits are correct)? 

Exercise 1.2 Run the code relerrher starting with x = 1 and y = 2 to √ 
approximate 2. Compare the results with table 1.1. Also run the code with 

1 x = 1 and y = and compare the results with the previous case. Explain 2 
what you find.
 

Exercise 1.3 Show that the maximum relative error in Heron’s algorithm
 √ 
for approximating y for y ∈ [1/M, M ], for a fixed number of iterations 
and starting with x0 = 1, occurs at the ends of the interval: y = 1/M and 
y = M . (Hint: consider (1.10) and (1.14) and show that the function 

φ(x) = 1 2(1 + x)−1 x (1.34) 2

plays a role in each. Show that φ is increasing on the interval [0, ∞[.) 

Exercise 1.4 It is sometimes easier to demonstrate the relative accuracy of 
an approximation x̂ to x by showing that 

|x − x̂| ≤ E<|x̂| (1.35) 

instead of verifying (1.5) directly. Show that if (1.35) holds, then (1.5) holds 
with E = E</(1− E<). 

Exercise 1.5 There is a simple generalization to Heron’s algorithm for find­
ing kth roots as follows: 

x ← 
1
((k − 1)x + y/xk−1). (1.36) 

k 
kShow that, if this converges, it converges to a solution of x = y. Examine 

the speed of convergence both computationally and by estimating the error 
algebraically. 

http:Showthatif(1.35
http:and(1.14
http:consider(1.10
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Exercise 1.6 Show that the error in Heron’s algorithm for approximating √ 
y satisfies 

√ √ 
xn − y 

( 
x0 − y 

)2n 

√ = √ (1.37) 
xn + y x0 + y 

for n ≥ 1. Note that the denominator on the left-hand side of (1.37) con­√ 
verges rapidly to 2 y. 

Exercise 1.7 We have implicitly been assuming that we were attempting to 
compute a positive square-root with Heron’s algorithm, and thus we always 
started with a positive initial guess. If we give zero as an initial guess, there 
is immediate failure because of division by zero. But what happens if we start 

2with a negative initial guess? (Hint: there are usually two roots to x = y, 
one of which is negative.) 

Exercise 1.8 Consider the iteration 
2 x ← 2x − yx (1.38) 

and show that, if it converges, it converges to x = 1/y. Note that the algo­
rithm does not require a division. Determine the range of starting values x0 

for which this will converge. What sort of scaling (cf. section 1.1.2) would 
be appropriate for computing 1/y before starting the iteration? 

Exercise 1.9 Consider the iteration 
3 x ← 3 x − 1 yx (1.39) 2 2 √ 

and show that, if this converges, it converges to x = 1/ y. Note that this √ 
algorithm does not require a division. The computation of 1/ y appears in 
the Cholesky algorithm in (4.12). 

√ 
Exercise 1.10 Suppose that a + by is the best linear approximation to y 
in terms of relative error on [1 , 2]. Prove that the error expression eab has 2
to be negative at its minimum. (Hint: if not, you can always decrease a to 
make eab(2) and eab(

1 ) smaller without increasing the maximum value of 2
|eab|.) 

√ 
Exercise 1.11 Suppose that a + by is the best linear approximation to y 
in terms of relative error on [12 , 2]. Prove that a = b. 

√ 
Exercise 1.12 Suppose that a + ay is the best linear approximation to y 
in terms of relative error on [1 , 2]. Prove that the error expression 2

eaa(1) = −eaa(2). (1.40) 

(Hint: if not, you can always decrease a to make eaa(2) and eaa(1 ) smaller 2
without increasing the maximum value of |eab|.) 

Exercise 1.13 Consider the effect of the best starting value of a in (1.25) 
on the Heron algorithm. How many iterations are required to get 16 digits 
of accuracy? And to obtain 32 digits of accuracy? 

http:algorithmin(4.12
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Exercise 1.14 Change the function minus for computing x̃− and the func­
tion plusinv for computing x̂− to functions for computing x̃+ (call that 
function plus) and x̂+ (call that function minusinv). Use the check func­
tion to see where they work well and where they fail. Compare that with the 
corresponding behavior for minus and plusinv. 

Exercise 1.15 The iteration (1.28) can be implemented via the function 

function y =sosimpl(x,a)
 

y=x+x^2-a;
 

Use this to verify that sosimpl(1,1) is indeed 1, but if we start with 

x=1.000000000001
 

and then repeatedly apply x=sosimpl(x,1), the result ultimately diverges. 

1.7 SOLUTIONS 

1Solution of Exercise 1.3. The function φ(x) = (1+x)−1x2 is increasing 2
on the interval [0, ∞[ since 

2 22x(1 + x)− x 2x + x1 1φ<(x) = = > 0 (1.41) 2 2(1 + x)2 (1 + x)2 

for x > 0. The expression (1.10) says that 

ên+1 = φ(ên), (1.42) 

and (1.14) says that 

ê1 = φ(x − 1). (1.43) 

Thus 

ê2 = φ(φ(x − 1)). (1.44) 

By induction, define 

φ[n+1](t) = φ(φ[n](t)), (1.45) 

where φ[1](t) = φ(t) for all t. Then, by induction, 

ên = φ[n](x − 1) (1.46) 

for all n ≥ 1. Since the composition of increasing functions is increasing, each 
φ[n] is increasing, by induction. Thus ên is maximized when x is maximized, 
at least for x > 1. Note that 

φ(x − 1) = φ((1/x) − 1), (1.47) 

so we may also write 

ên = φ[n]((1/x)− 1). (1.48) 

http:and(1.14
http:expression(1.10
http:Theiteration(1.28
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Thus the error is symmetric via the relation 

ên(x) = ên(1/x). (1.49) 

Thus the maximal error on an interval [1/M, M ] occurs simultaneously at 
1/M and M . 

Solution of Exercise 1.6. Define dn = xn +x. Then (1.37) in exercise 1.6 
is equivalent to the statement that 

en 

( 
e0 
)2n 

= . (1.50) 
dn d0

Thus we compute 

1
2

1
2

1
2dn+1 = xn+1 + x = (xn + y/xn) + (x + y/x)

) 
(dn + y/xn + y/x)= 

(
y(x + xn)

)
dn + 

xxn 

( (
xdn 

)
dn + 

xn 

ydn1
2

1
2

1
2dn += = = 

xxn (
x 
)

1 + 
xn 

)
2dn 

xn 

(1.51) 

x1
2

1
2

1
2dn dn = = = .

( 
xn + 

xn 

1
2

2 
nRecall that (1.8) says that en+1 = /xn, so dividing by (1.51) yields e

en+1 

( 
en 

)2 

= (1.52) 
dn+1 dn 

for any n ≥ 0. A simple induction on n yields (1.50), as required. 

http:yields(1.50



