
Chapter One

Computer Arithmetic

In this chapter, we give an elementary overview of how (and what type of)
numbers are represented, stored, and manipulated in a computer. This will pro-
vide insight as to why some computations produce grossly incorrect results. This
topic is covered much more extensively in, for example, [Mu09], [Hi96], [Ov01],
and [Wi63].

1.1 POSITIONAL SYSTEMS

Our everyday decimal number system is a positional system in base 10. Since com-
puter arithmetic is often built on positional systems in other bases (e.g., 2 or 16),1

we will begin this section by recalling how real numbers are represented in a posi-
tional system with an arbitrary integer base β ≥ 2. Setting aside practical restric-
tions, such as the finite storage capabilities of a computer, any real number can be
expressed as an infinite string

(−1)σ (bnbn−1 · · · b0.b−1b−2 · · ·)β, (1.1)

where bn, bn−1, . . . are integers in the range [0, β − 1], and σ ∈ {0, 1} provides the
sign of the number. The real number corresponding to (1.1) is

x = (−1)σ
n∑

i=−∞
biβ

i

= (−1)σ (bnβ
n + bn−1β

n−1 + · · · + b0 + b−1β
−1 + b−2β

−2 + · · ·).
If the number ends in an infinite number of consecutive zeros we omit them in

the expression (1.1). Thus we write (12.25)10 instead of (12.25000 . . .)10. Also,
we omit any zeros preceding the integer part (−1)σ (bnbn−1 . . . b0)β . Thus we write
(12.25)10 instead of (0012.25)10, and (0.0025)10 instead of (000.0025)10. Allow-
ing for either leading or trailing extra zeros is called padding and is not common
practice since it leads to redundancies in the representation.

Even without padding, the positional system is slightly flawed. No matter what
base we choose, there are still real numbers that do not have a unique representa-
tion. For example, the decimal number (12.2549999 . . .)10 is equal to (12.255)10,
and the binary number (100.01101111 . . .)2 is equal to (100.0111)2. This

1Of course, some exceptions do exist: most calculators still use base 10; the Russian computer Setun
used base 3, whereas the American Maniac II used base 65536 = 164.

Copyrighted Material

2 CHAPTER 1

redundancy, however, can be avoided if we add the requirement that 0 ≤ bi ≤ β−2
for infinitely many i .

Exercise 1.1. Prove that any real number x �= 0 has a unique representation (1.1)
in a positional system (allowing no padding) with integer base β ≥ 2 under the
two conditions (a) 0 ≤ bi ≤ β − 1 for all i , and (b) 0 ≤ bi ≤ β − 2 for infinitely
many i .

Exercise 1.2. What is the correct way to represent zero in a positional system al-
lowing no padding?

1.2 FLOATING POINT NUMBERS

When expressing a real number on the form (1.1), the placement of the decimal2

point is crucial. The floating point number system provides a more convenient way
to represent real numbers. A floating point number is a real number on the form

x = (−1)σ m × βe, (1.2)

where (−1)σ is the sign of x , m is called the mantissa,3 and e is called the exponent
of x . Writing numbers in floating point notation frees us from the burden of keeping
track of the decimal point: it always follows the first digit of the mantissa. It is
customary to write the mantissa as

m = (b0.b1b2 . . .)β

where, compared to the previous section, the indexing of the bi has the opposite
sign. As this is the standard notation, we will adopt this practice in what follows.
Thus we may define the set of floating point numbers in base β as:

Fβ = {(−1)σ m × βe : m = (b0.b1b2 . . .)β},
where, as before, we request that β is an integer no less than 2, and that 0 ≤ bi ≤
β − 1 for all i , and that 0 ≤ bi ≤ β − 2 for infinitely many i . The exponent e may
be any integer.

Expressing real numbers in floating point form introduces a new type of redun-
dancy. For example, the base 10 number 123 can be expressed as (1.23)10 × 102,
(0.123)10 × 103, (0.0123)10 × 104, and so on. In order to have unique representa-
tions for non-zero real numbers, we demand that the leading digit b0 be non-zero,
except for the special case x = 0. Floating point numbers satisfying this additional
requirement are said to be normal or normalized.4

Exercise 1.3. Show that a non-zero floating point number is normal if and only if
its associated exponent e is chosen minimal.

2Being picky, the expression “base point” or “radix point” is more appropriate, unless β = 10.
3The mantissa is sometimes referred to as the significand or, rather incorrectly, as the fractional part

of the floating point number.
4This should not be confused with the number-theoretic notion of a normal number. There a number

is normal to base β if every sequence of n consecutive digits in its β-expansion appears with limiting
probability β−n .

Copyrighted Material

COMPUTER ARITHMETIC 3

So far, we have simply toyed with different representations of the real numbers
R. As this set is uncountably infinite, whereas a machine can only store a finite
amount of information, more drastic means are called for: we must introduce a
new, much smaller set of numbers designed to fit into a computer that at the same
time approximate the real numbers in some well-defined sense.

As a first step toward this goal, we restrict the number of digits representing the
mantissa. This yields the set

Fβ,p = {x ∈ Fβ : m = (b0.b1b2 . . . bp−1)β}.
The number p is called the precision of the floating point system. It is a nice
exercise to show that although Fβ,p is a much smaller set than Fβ , it is count-
ably infinite. This means that even Fβ,p is too large for our needs. Note, however,
that the restriction 0 ≤ bi ≤ β − 2 for infinitely many i becomes void in finite
precision.

A finite set of floating point numbers can be formed by imposing a fixed pre-
cision, as well as bounds on the admissible exponents. Such a set is specified by
four integers: the base β, the precision p, and the minimal and maximal exponents
ě and ê, respectively. Given these quantities, we can define parameterized sets of
computer representable floating point numbers:

F
ě,ê
β,p = {x ∈ Fβ,p : ě ≤ e ≤ ê}.

Exercise 1.4. Show that F
ě,ê
β,p is finite, whereas Fβ,p is countably infinite, and Fβ is

uncountably infinite, with

F
ě,ê
β,p ⊂ Fβ,p ⊂ Fβ.

(See appendix A for the different notions of infinite.)

Exercise 1.5. How many normal numbers belong to the set F
ě,ê
β,p?

Using a base other than 10 forces us to have to rethink which numbers have a
finite representation. This can cause some confusion to the novice programmer.

Example 1.2.1 With β = 2 and p < ∞, the number 1/10 is not exactly repre-
sentable in Fβ,p. This can be seen by noting that

∞∑
k=1

(2−4k + 2−(4k+1)) = 3

2

(
1

1− 2−4
− 1

)
= 1

10
.

Interpreting the first sum as a binary representation, we have

1/10 = (0.00011001100110011 . . .)2 = (1.1001100110011 . . .)2 × 2−4.

Since this is a non-terminating binary number, it has no exact representation in
F2,p, regardless of the choice of precision p.

This example may come as a surprise to all who use the popular step-sizes 0.1
or 0.001 in, say, numerical integration methods. Most computers use β = 2 in
their internal floating point representation, which means that on these comput-
ers 1000 × 0.001 �= 1. This simple fact can have devastating consequences, for

Copyrighted Material

4 CHAPTER 1

example, for very long integration procedures. More suitable step-sizes would be
2−3 = 0.125 and 2−10 = 0.0009765625, which are exactly representable in base 2.
Example 1.4.1 further illustrates how sensitive numerical computations can be to
these small conversion errors.

1.2.1 Subnormal Numbers

As mentioned earlier, without the normalizing restriction b0 �= 0, a non-zero real
number may have several representations in the set F

ě,ê
β,p. (Note, however, that

most real numbers no longer have any representation in this finite set.) We already
remarked that these redundancies may be avoided by normalization, that is, by
demanding that all non-zero floating point numbers have a non-zero leading digit.
To illustrate the concept of normalized numbers, we will study a small toy system
of floating point numbers, illustrated in Figure 1.1.

752 3 4 61

Figure 1.1 The normal numbers of F
−1,2
2,3 .

It is clear that the floating point numbers are not uniformly distributed: the posi-
tive numbers are given by

{0.5, 0.625, 0.75, 0.875, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5, 4, 5, 6, 7}.
Thus the intermediate distances between consecutive numbers range within the set
{0.125, 0.25, 0.5, 1}. In Section 1.3, we will explain why this type of non-uniform
spacing is a good idea. We will also describe how to deal with real numbers having
modulus greater than the largest positive normal number N n

max , which in our toy
system is (1.11)2 × 22 = 7.

Note that the smallest positive normal number in F
−1,2
2,3 is N n

min = (1.00)2 ×
2−1 = 0.5, which leaves an undesired gap centered around the origin. This leads
not only to a huge loss of accuracy when approximating numbers of small magni-
tude but also to the violation of some of our most valued mathematical laws (see
Exercise 1.18). A way to work around these problems is to allow for some numbers
that are not normal.

A non-zero floating point number in F
ě,ê
β,p with b0 = 0 and e = ě is said to be

subnormal (or denormalized). Subnormal numbers allow for a gradual underflow
to zero (compare Figures 1.1 and 1.2). Extending the set of admissible floating point
numbers to include the subnormal numbers still preserves uniqueness of represen-
tation, although the use of these additional numbers comes with some penalties, as
we shall shortly see. For our toy system at hand, the positive subnormal numbers
are {0.125, 0.25, 0.375}.

Figure 1.2 illustrates the normal and subnormal numbers of F
−1,2
2,3 . The difference

between these two sets is striking: the smallest positive normal number N n
min is

(1.00)2 × 2−1 = 0.5, whereas the smallest positive subnormal number N s
min is

Copyrighted Material

COMPUTER ARITHMETIC 5

(0.01)2 × 2−1 = 0.125. The largest subnormal number N s
max is (0.11)2 × 2−1

= 0.375. Geometrically, introducing subnormal numbers corresponds to filling the
gap centered around the origin with evenly spaced numbers. The spacing should be
the same as that between the two smallest positive normal numbers.

1 2 3 4 5 6 7

Figure 1.2 The normal and subnormal numbers of F
−1,2
2,3 .

From now on, when we refer to the set F
ě,ê
β,p, we mean the set of normal and

subnormal numbers. We will use F to denote any set of type F
ě,ê
β,p or Fβ,p; when

needed, the exact parameters of the set in question will be provided. A real number
x with N n

min ≤ |x | ≤ N n
max is said to be in the normalized range of the associated

floating point system.

Exercise 1.6. Prove that the non-zero normal and subnormal numbers of F
ě,ê
β,p have

unique representations.

Exercise 1.7. How many positive subnormal numbers are there in the set F
ě,ê
β,p?

Exercise 1.8. Derive formulas for N s
min, N s

max , N n
min, and N n

max for a general set

of floating point numbers F
ě,ê
β,p.

We conclude this section by remarking that although the floating point numbers
are not uniformly spaced; for ě ≤ m, n < ê, the sets F

ě,ê
β,p ∩ [βm, βm+1) and F

ě,ê
β,p ∩

[βn, βn+1) have the same cardinality. This is apparent in Figures 1.1 and 1.2. We
also note that any floating point system F is symmetric with respect to the origin:
x ∈ F⇔ −x ∈ F.

Exercise 1.9. Compute the number of elements of the set F
ě,ê
β,p ∩ [βn, βn+1), pro-

vided that ě ≤ n < ê.

1.3 ROUNDING

We have now reached the stage where we have succeeded in condensing the
uncountable set of real numbers R into a finite set of floating point numbers F.
Almost all commercial computers use a set like F, with some minor additions, to
approximate the real numbers. In order to make computing feasible over F, we
must find a means to associate any real number x ∈ R to a member y of F. Such
an association is called rounding and defines a map from R onto F. Obviously, we
cannot make the map invertible, but we would like to make it as close as possible
to a homeomorphism.

Before defining such a mapping, we will extend both the domain and range
into the sets R∗ = R ∪ {−∞,+∞} and F∗ = F ∪ {−∞,+∞}, respectively.
This provides an elegant means for representing real numbers that are too large in

Copyrighted Material

6 CHAPTER 1

absolute value to fit into F. In the actual implementation, the symbols {−∞,+∞}
are specially coded and do not have a valid representation such as (1.2).

Following the excellent treatise on computer arithmetic, [KM81], a rounding
operation© : R∗→F∗ should have the following properties:

(R1) x ∈ F∗ ⇒ ©(x) = x ,
(R2) x, y ∈ R∗ and x ≤ y ⇒©(x) ≤ ©(y).

Property (R1) simply states that all members of F∗ are fixed under©. Clearly an
already representable number does not require any further rounding. Property (R2)
states that the rounding is monotone. Indeed, it would be very difficult to interpret
the meaning of any numerical procedure without this property. Combining (R1)
and (R2), one can easily prove that the rounding© is of maximum quality, that is,
the interior of the interval spanned by x and©(x) contains no points of F∗.

Lemma 1.10. Let x ∈ R∗. If© : R∗ → F∗ satisfies both (R1) and (R2), then the
interval spanned by x and©(x) contains no points of F∗ in its interior.

Proof. The claim is trivially true if x = ©(x) (since then the interior is empty), so
assume that x �= ©(x). Without loss of generality we may assume that x < ©(x).
Now suppose that the claim is false, that is, there exists an element y ∈ F∗ with
x < y < ©(x). Since, by (R1), we have ©(y) = y, we must, by (R2), have
©(x) ≤ y. This gives the desired contradiction. �

We will now describe four rounding modes that are available on most commer-
cial computers.

1.3.1 Round to Zero

The simplest rounding operation to implement is round toward zero, often referred
to as truncation, which we denote by �z . We formally define �z : R∗ → F∗ by

�z(x) = sign(x) max{y ∈ F∗ : y ≤ |x |}, (1.3)

where sign(x) is the sign of x . The action of �z is illustrated in Figure 1.3. To
see how easy this rounding mode is to implement, consider a real number x =
(−1)σ (b0.b1b2 . . .)β × βe in Fβ to be rounded into Fβ,p. If x satisfies |x | ≤ N n

max ,
this is achieved by simply discarding the mantissa digits beyond position p − 1
(hence the nickname truncation): �z(x) = (−1)σ (b0.b1b2 . . . bp−1)β × βe. Other-
wise, x is rounded to (−1)σ N n

max .
Round toward zero is an odd5 function:

(R3) x ∈ R∗ ⇒ ©(−x) = −© (x).

Rule (R3) is also satisfied by the most common rounding mode: round to nearest,
which we shall return to later.

5A function f is said to be odd if f (−x) = − f (x) and even if f (−x) = f (x). Most functions are
neither.

Copyrighted Material

COMPUTER ARITHMETIC 7

Figure 1.3 Round to zero �z .

1.3.2 Directed Rounding

There are two very useful rounding modes that are said to be directed . By this we
mean that they satisfy (in addition to (R1) and (R2)) one of the following rules:

(R4) (a) x ∈ R∗ ⇒ ©(x) ≤ x or (b) x ∈ R∗ ⇒ ©(x) ≥ x .

The rounding mode satisfying (R4a) is called round toward minus infinity (or sim-
ply round down). The rounding mode satisfying (R4b) is called round toward plus
infinity (or simply round up). These rounding modes are denoted �(x) and �(x),
respectively, and are formally defined by

�(x) = max{y ∈ F∗ : y ≤ x} and � (x) = min{y ∈ F∗ : y ≥ x}. (1.4)

The number �(x), called x rounded down, is the largest floating point number less
than or equal to x , whereas�(x), called x rounded up, is the smallest floating point
number greater than or equal to x . Note that if x ∈ F∗, then �(x) = x = �(x),
whereas if x /∈ F∗, we have the enclosure �(x) < x < �(x), which is of maximal
quality. This means that the interval [�(x),�(x)] contains no points of F∗ in its
interior (apply Lemma 1.10 twice). Also note the anti-symmetry relations:

�(−x) = −� (x) and � (−x) = −� (x). (1.5)

Thus either rounding � or � can be completely defined in terms of the other.

Exercise 1.11. Using only (1.4), prove that the rounding modes � and � satisfy
(R1) and (R2). Also show that � satisfies (R4a) and that � satisfies (R4b).

Exercise 1.12. Show that, in terms of the directed rounding mode �, we have

�z(x) = sign(x)� (|x |).

The relations (1.4) completely define the directed roundings � and � as maps
from R∗ to F∗ (see Figure 1.4).

Copyrighted Material

8 CHAPTER 1

Figure 1.4 Directed roundings: (left) round down �; (right) round up �.

1.3.3 Round to Nearest (Even)

Note that all previously defined rounding modes map the interior of any interval
spanned by two consecutive floating point numbers onto a single point in F∗. This
means that the error made when rounding a single real number x could be as large
as the length of the interval [�(x),�(x)] enclosing it. A more accurate family of
rounding modes is called round to nearest.

For an element of x ∈ R∗, we can construct an enclosure of x in F∗:

�(x) ≤ x ≤ �(x).

If also |x | ≤ N n
max , we let μ = 1

2 (�(x)+�(x)) denote the midpoint of this interval.
If |x | > N n

max , we let μ = sign(x)N n
max . Rounding to nearest returns�(x) if x < μ,

and �(x) if x > μ. In the rare case x = μ, there is a tie. The different variants of
rounding to nearest are distinguished according to how they resolve this tie.

One easy way to break the tie is to simply round up for positive ties and down
for negative ones. This rounding mode is called round to nearest and is defined by

x > 0⇒ �n(x)=
{
�(x), if x ∈ [�(x), μ),

�(x), if x ∈ [μ,�(x)],
(1.6)

x < 0⇒ �n(x)=−�n(−x).

Although easy to describe, this rounding mode has the slight disadvantage of being
biased: the rounding errors are not evenly distributed around zero. Indeed, if x is
positive, then �n has a higher probability of rounding x downward and vice versa
(see Figure 1.5a).

An unbiased way to break the tie gives rise to a rounding mode called round to
nearest even, which we simply denote by �. This is the default rounding mode on
almost all commercial computers. In order to define this rounding operation, we
will assume that the mantissas of �(x) and �(x) are given by

(a0.a1a2 . . . ap−1)β and (b0.b1b2 . . . bp−1)β,

Copyrighted Material

COMPUTER ARITHMETIC 9

Figure 1.5 Round to nearest: (a) biased �n ; (b) unbiased �.

respectively. Note that, by Lemma 1.10, if x /∈ F∗ then exactly one of the integers
ap−1 and bp−1 is even. We define the round to nearest even scheme by

x > 0⇒ �(x) =
{�(x), if x ∈ [�(x), μ), or if x = μ and ap−1 is even,

�(x), if x ∈ (μ,�(x)], or if x = μ and bp−1 is even,

(1.7)
x < 0⇒ �(x) = −�(−x).

Note that this definition evens out the probability of rounding upward or downward;
the rounding is unbiased (see Figure 1.5b).

When rounding a real number x of very large magnitude (|x | > N n
max) it should

be pointed out that despite the name round to nearest, x is actually rounded to
sign(x)∞, while sign(x)N n

max actually is the nearest element in F∗.
As a final remark, it is clear that round to nearest odd can be defined in a

completely analogous manner. One may then wonder whether the choice between
rounding to nearest even or to nearest odd is relevant. The answer is, somewhat
surprisingly, yes. This is demonstrated in the following example.

Example 1.3.1 Consider the following scenario: let β = 10, x = 0.45, and
suppose that we want to round x to two digits, after which we continue to round the
result to one digit. Using round to nearest even produces 0.45 → 0.4 → 0 = x̃e,
whereas round to nearest odd produces 0.45 → 0.5 → 1 = x̃o, which is not the
nearest single-digit number seeing that |x − x̃e| = 0.45 < 0.55 = |x − x̃o|.

Now, suppose that β = 4, x = (0.22)4, and suppose once again that we want to
round x to two digits, after which we continue to round the result to one digit. Using
round to nearest even produces (0.22)4 → (0.2)4 → (0)4 = x̃e, whereas round to
nearest odd produces (0.22)4 → (0.3)4 → (1)4 = x̃o, which now is the nearest
single-digit number seeing that |x − x̃e| = (0.22)4 = 5/8 > 3/8 = (0.21)4 =
|x − x̃o|.

This example illustrates the fact that when using an even base β, with β/2
odd, the best choice is round to nearest even. For an even base β, with β/2 even,

Copyrighted Material

10 CHAPTER 1

however, the best choice is round to nearest odd. If the base itself β is odd, we can
never have a tie (at least not in finite precision), so the choice of rounding never
arises.

In particular, this means that for the popular choices β = 10 or 2, we should use
round to nearest even, whereas for β = 16, round to nearest odd is the superior
choice.

1.3.4 Rounding Errors

In the normalized range, the error produced when rounding a real number to a
floating point system can be bounded in terms of the base β and precision p. We
have the following bounds on the relative and absolute rounding errors.

Theorem 1.13. If x is a real number in the normalized range of F = Fβ,p, then
the relative error caused by rounding is bounded by εM = β−(p−1):∣∣∣∣ x −©(x)

x

∣∣∣∣ < εM .

Equivalently, the corresponding absolute error is bounded by |x |εM :

|x −©(x)| < |x |εM .

The number εM = β−(p−1) is called the machine epsilon and is a very use-
ful quantity in numerical error analysis. It is the distance between 1 and the next
larger floating point number. We will encounter εM on several occasions throughout
this text.

Proof. Without loss of generality, we may assume that x is positive. If x hap-
pens to be a member of F, then there is no rounding error, and the claim follows
trivially. Thus we only need to consider the case x /∈ F. Since x is in the nor-
malized range, it has a representation x = (b0.b1b2 . . . bp−1bp . . .)β × βe, where
b0 �= 0. Using the fact that x /∈ F, it follows that its nearest neighbors in F,
�(x) = (b0.b1b2 . . . bp−1)β × βe and �(x) = [(b0.b1b2 . . . bp−1)β + β−(p−1)] ×
βe, are separated by the distance given by �(x) − �(x) = β−(p−1) × βe =
εMβe and so |x − ©(x)| < εMβe. Since x is normalized, we have that x ≥
1 × βe, so |x − ©(x)| < xεM . This gives the absolute error bound from which
the relative bound follows immediately. Negative numbers are treated completely
analogously. �

Note that in the case of rounding to nearest, the bounds of Theorem 1.13 can be
decreased by a factor 0.5.

Exercise 1.14. Show that the spacing between two adjacent floating point numbers
x and y in the normalized range is bounded between |x |εM/β and |x |εM .

Example 1.3.2 With base β = 2 and precision p = 14, the correctly rounded
fraction 1/10 is represented as:

�(1/10)= (1.1001100110011)2 × 2−4,

�(1/10)= (1.1001100110100)2 × 2−4.

Copyrighted Material

COMPUTER ARITHMETIC 11

Thus we have∣∣∣∣1/10−�(1/10)

1/10

∣∣∣∣
=

∣∣∣∣ (1.10011001100110011 . . .)2 × 2−4 − (1.1001100110011)2 × 2−4

(1.10011001100110011 . . .)2 × 2−4

∣∣∣∣
=

∣∣∣∣ (1.10011001100110011 . . .)2 × 2−20

(1.10011001100110011 . . .)2 × 2−4

∣∣∣∣ = 2−16.∣∣∣∣1/10−�(1/10)

1/10

∣∣∣∣
=

∣∣∣∣ (1.10011001100110011 . . .)2 × 2−4 − (1.1001100110100)2 × 2−4

(1.10011001100110011 . . .)2 × 2−4

∣∣∣∣
=

∣∣∣∣(0.11001100110011001 . . .)2×2−15− (1.0000000000000)2×2−15

(1.10011001100110011 . . .)2 × 2−4

∣∣∣∣
<

∣∣∣∣ (011)2 × 2−17 − (100)2 × 2−17

(1.100)2 × 2−4

∣∣∣∣ =
∣∣∣∣3× 2−17 − 4× 2−17

(1.100)2 × 2−4

∣∣∣∣
=

∣∣∣∣ −1× 2−17

(1.100)2 × 2−4

∣∣∣∣ = 2

3
× 2−13.

Both relative errors are clearly bounded by εM = 2−13.

It is important to keep in mind that Theorem 1.13 does not hold for subnor-
mal numbers. In this situation, we can no longer use the fact that the leading
digit b0 in the floating point representation of x is non-zero. This prevents us from
obtaining the desired bounds. Nevertheless, a simple modification of the proof of
Theorem 1.13 gives the following error bounds.

Corollary 1.15. If x is a real number such that |x | = (b0.b1b2 . . . bp−1bp . . .)β×
β ě with bi = 0 for all 0 ≤ i < k ≤ p−1 and bk �= 0, then the relative error caused
by rounding to F

ě,ê
β,p is bounded by∣∣∣∣ x −©(x)

x

∣∣∣∣ < β−(p−1−k).

Equivalently, the corresponding absolute error is bounded by

|x −©(x)| < |x |β−(p−1−k).

Thus, rounding in the subnormal range (N s
min ≤ |x | ≤ N s

max) leads to larger relative
errors. The alternative, that is, having no subnormal numbers at all, would result
in flushing any number with |x | < N n

min to zero, which is of course even less
desirable. Note that the requirement k ≤ p − 1 ensures that |x | is not smaller
than the smallest positive subnormal number. Were this the case, the real number
|x | could be rounded down to zero, yielding a relative error of 1. It could also be

Copyrighted Material

12 CHAPTER 1

rounded up to the smallest subnormal number, in which case the relative error could
be arbitrarily large.

Example 1.3.3 In the floating point system F
−5,5
2,10 , the correctly rounded real num-

ber 10−100 is represented as:

�(10−100)= (0.000000000)2 × 2−5,

�(10−100)= (0.000000001)2 × 2−5.

Thus we have the relative error bounds:∣∣∣∣10−100 −�(10−100)

10−100

∣∣∣∣=
∣∣∣∣10−100 − (0.000000000)2 × 2−5

10−100

∣∣∣∣ = 1.

∣∣∣∣10−100 −�(10−100)

10−100

∣∣∣∣=
∣∣∣∣10−100 − (0.000000001)2 × 2−5

10−100

∣∣∣∣
=

∣∣∣∣10−100 − 2−14

10−100

∣∣∣∣ >
10−5

10−100
= 1095.

1.4 FLOATING POINT ARITHMETIC

The main mathematical concern about computing over a set of floating point num-
bers (i.e., a set F of type F

ě,ê
β,p or Fβ,p) is that it is not arithmetically closed. This

means that if we take two floating point numbers x, y ∈ F and choose an arith-
metic operator � ∈ {+,−,×,÷} then, in general, the result will not be exactly
representable in the floating point system: x � y /∈ F. This is a property that is
not shared by the real numbers R, nor even the rationals Q. No matter how high
precision we use, this problem remains.

The only way we can define arithmetic on a set of floating point numbers F

then is to associate the exact (in R) outcome of a floating point operation with
a representable floating point number. Naturally, this can be achieved by round-
ing the exact result from R to F. Given any one of the arithmetic operations � ∈
{+,−,×,÷}, let©� ∈ {©+ ,©− ,©× ,©÷} denote the corresponding operation carried
out in F. We say that the floating point arithmetic is of maximum quality if

(R5) x, y ∈ F and � ∈ {+,−,×,÷} ⇒ x©� y = ©(x � y).

Property (R5) states that floating point arithmetic should yield the same result as
though the computation were carried out with infinite precision, after which the
exact result is rounded to the appropriate neighboring floating point. Thus the only
error is incurred by the final rounding to F, and consequently, the result of any
arithmetic operation has the same quality as the rounding itself. It is true, but not
obvious, that this can be practically implemented.6

6In fact, it suffices to use registers having p + 2 digits of precision, combined with a so-called
sticky bit to obtain maximum quality in the arithmetic operations. See, for example, [Go91], [Kn98],
or [Ko02].

Copyrighted Material

COMPUTER ARITHMETIC 13

Theorem 1.16. Let � denote one of the arithmetic operators +,−,×,÷. Then, if
x and y are normal floating point numbers with x � y �= 0, and x©� y neither under-
or overflowing, the relative error of the floating point operation is bounded by∣∣∣∣ x � y − x©� y

x � y

∣∣∣∣ < εM .

Equivalently, the corresponding absolute error is bounded by

|x � y − x©� y| < |x � y|εM .

It is important to realize that Theorem 1.16 is only valid for one single floating point
operation. All bets are off when several operations are involved. An expression like

f (x) = 1©÷ ((1©+ x)©−1)

may return a grossly incorrect value when |x | < εM , depending on the rounding
mode. The following example serves as an illustration as to how these types of
inaccuracies may seriously affect the outcome of a simple numerical experiment.

Example 1.4.1 Consider the ternary shift map f : [0, 1] → [0, 1] defined by
f (x) = 3x mod 1. This map has a period-4 cycle 1

10 → 3
10 → 9

10 → 7
10 →

1
10 . Starting a numerical iteration (over F2,53) at x0 = 1

10 , however, produces the
following orbit:

x(0)= 0.10000000000000001 x(1) = 0.30000000000000004

x(2)= 0.90000000000000013 x(3) = 0.70000000000000018

x(4)= 0.10000000000000053 x(5) = 0.3000000000000016
...

x(47)= 0.15273362128584456 x(48) = 0.45820086385753367

x(49)= 0.37460259157260101 x(50) = 0.12380777471780302

x(51)= 0.37142332415340906 x(52) = 0.11426997246022719

After less than 50 iterates, there is no sign of the periodic orbit. The reason is that
the function f is expanding, that is, its derivate (when defined) is greater than 1
everywhere. As a consequence, even very small initial errors will eventually be
grossly magnified and completely saturate the computed orbit. This intrinsic prop-
erty of expanding maps makes the numerical study of chaotic dynamical systems a
very challenging topic.

Another consequence of computing with finite precision is that many basic math-
ematical laws no longer hold. For example, addition and multiplication are no
longer associative.

Example 1.4.2 Consider the numbers x = 1.234 × 104, y = −1.235 × 104, and
z = 1.002× 101, all belonging to F

−9,9
10,4 . Rounding to nearest even, we have

(x©+ y)©+ z = −1.000× 101©+1.002× 101 = 2.000× 10−2,

Copyrighted Material

14 CHAPTER 1

whereas

x©+ (y©+ z) = 1.234× 104©−1.234× 104 = 0.000× 10−9.

The first result is exact, while the second suffers from inaccuracies caused by a lack
of precision.

Exercise 1.17. How many pairs of floating point numbers can be exactly added in
the set F

−1,2
2,3 ? How many pairs cannot? What about the general case F

ě,ê
β,p?

Exercise 1.18. Assuming the property (R5), show that the following statements al-
ways hold true:

(1) x ∈ F⇒ 1©× x = x ;

(2) x ∈ F \ {−∞, 0,+∞} ⇒ x©÷ x = 1;

(3) x ∈ F (with β = 2)⇒ 0.5©× x = x©÷2.

(4) x, y ∈ F⇒ (x©− y = 0)⇒ (x = y).

Also show that statement (4) is false if F has no subnormal numbers.

In view of (R5), we can give a computational definition of the machine epsilon.
Even if the base and precision of the underlying floating point system are unknown,
this definition allows for a direct computation of εM .

Definition 1.19. In a floating point system with base β and precision p, we call
the number εM = β−(p−1) the machine epsilon. It is the smallest positive floating
point number x that satisfies 1 < 1©+ x when rounding down, that is, εM = min{x ∈
F : 1 < �(1©+ x)}.

Note that the condition 1 < �(1©+ x) is very different from the seemingly equiv-
alent condition 0 < �(x). Some aggressively optimizing compilers do not realize
this distinction and thus produce grossly incorrect code. The smallest floating point
number x satisfying 0 < �(x) is called the machine eta and is denoted by ηM . This
is the smallest positive subnormal number and is thus equal to β ě−p+1 = β ěεM .
In Problem 2 of Computer Lab I the reader is asked to write a small program that
computes both εM and ηM . These computations can safely be carried out in the
default rounding mode, round to nearest even, since the least significant bit of both
1.0 and 0.0 is zero, which is an even number.

1.5 THE IEEE STANDARD

In the early days of computing, each brand of computer had its own implementa-
tion for floating point operations. This had the unfortunate effect that the outcome
of a computation heavily depended on the precise type of machine used to per-
form the calculations. Naturally, this also severely limited the portability of pro-
grams, as code that worked perfectly well on one machine could crash on another.
Even worse, most computer manufacturers had their own internal representation of

Copyrighted Material

COMPUTER ARITHMETIC 15

floating point numbers. Of course, this meant that data transfer between different
machines became a highly complex task.

In the second half of the 1980s, an international standard for the use and rep-
resentation of floating point numbers was agreed upon. The standard is actually
several standards: the IEEE p754, released in 1985, which deals exclusively with
binary representations, and the IEEE p854, released in 1987, which in a common
framework considers both base 2 and 10 (see [IE85] and [IE87], respectively).
Recently, both of these documents have been superseded by the IEEE-754-2008
(see [IE08]). As this standard has yet to be adhered to by hardware manufacturers,
we will focus on the two older standards when referring to the IEEE standard.

Besides demanding maximal quality7 of the arithmetic of floating point numbers,
the standard also requires a consistent treatment of exceptions (e.g., division by
zero), which greatly facilitates the construction of robust code. The IEEE standard
also requires the presence of the four basic rounding modes: round up, round down,
round to zero, and round to nearest (even).

For two very nice expositions of the IEEE floating point standard, see [Go91]
and [Ov01].

1.5.1 The IEEE Formats

The IEEE standard specifies two basic types of floating point numbers: the single
and double formats. Extended versions of these formats are also mentioned,
although only minimal requirements (as opposed to exact descriptions) for these
are specified. Whereas the extended double format is provided on most architec-
tures, the extended single format has found little support. We will therefore only
cover the extended double format, which henceforth is denoted extended.

The standard also introduces three special symbols: -Inf, +Inf, and NaN. The
first two are direct analogues to the mathematical notion of±∞. Any finite floating
point number x satisfies -Inf < x < +Inf. A real number greater than the largest
finite floating point number is represented as either N n

max or +Inf, depending on
the rounding mode. Similarly, a real number smaller than the smallest finite floating
point number is represented as either −N n

max or -Inf. The symbol NaN, which
is short for not a number, is returned whenever the outcome of a floating point
operation is undefined, for example, 0/0 or Inf-Inf. The IEEE standard will in
some cases distinguish between −0 and +0, which can lead to some unexpected
behavior. We will return to this matter in Section 2.3.3.

To simplify the exposition, in all that follows we will consider only floating point
representations in binary base. Although this base has some special advantages, the
theory presented can easily be generalized to a setting with an arbitrary base.

On almost all commercial computers, the two basic formats single and
double are implemented using exactly the same mold, varying only two
parameters. Each format is made up of a fixed number F� of bits (binary integers),

7The IEEE standard requires that the basic operations {+,−,×,÷} and √ return the floating point
nearest to the exact result with regard to the rounding mode. Rather surprisingly, no such demands
are imposed on the trigonometric and exponential functions. On a HP 9000/700, the argument x =
2.50× 1017 produces the grossly incorrect sin x = 4.14415× 107.

Copyrighted Material

16 CHAPTER 1

where the subscript � ∈ {s, d} indicates the specific format in question. The first bit
encodes the sign of the floating point number, the following E� bits correspond to
the exponent, and the remaining M� bits represent the mantissa. Thus, any two ele-
ments of {F�, E�, M�} completely define the format in question. Actually, each for-
mat has precision M� + 1. This is achieved by a hidden bit: since a normal floating
point number represented in base 2 must start with a one, there is no need to explic-
itly store this leading bit. Note that this trick only works for binary representations.
The exponent also has a little twist to it: we are not storing the actual exponent but
rather a biased version of it. Using E� bits, we can represent any integer between 0
and 2E� − 1. We form the actual exponent by subtracting the bias B� = 2E�−1 − 1
from the stored number. This gives a exponent range of [−2E�−1 + 1, 2E�−1]. The
two boundary points, however, are reserved for non-normal numbers.

Consider the F�-bit string [σ ; e1e2 . . . eE�
;m1m2 . . . mM�

], and let E = (e1e2 . . .

eE�
)2 and M = (0.m1m2 . . . mM�

)2. Then the floating point number x represented
by the string is decoded as follows:

(a) if E = 2E� − 1 and M �= 0, then x = NaN;
(b) if E = 2E� − 1 and M = 0, then x = (−1)σ Inf;
(c) if 0 < E < 2E� − 1, then x = (−1)σ 1.M × 2E−B� ;
(d) if E = 0 and M �= 0, then x = (−1)σ 0.M × 21−B� ;
(e) if E = 0 and M = 0, then x = (−1)σ × 0.

We see that case (c) corresponds to the set of normal numbers, whereas case (d)
deals with the subnormal numbers. Note that cases (d) and (e) could be merged,
although we chose not to do so seeing that zero is not a subnormal number.

1 E M
σ e m

Figure 1.6 The basic IEEE formats.

The single format consists of 32 bits, of which 8 bits correspond to the expo-
nent and the remaining 23 bits represent the mantissa. In other words, we have
{Fs, Es, Ms} = {32, 8, 23}. The smallest and largest positive normal numbers
in single format are seen to be N n

min = 2−126 ≈ 1.2 × 10−38 and N n
max =

(2 − 2−23) × 2127 ≈ 2128 ≈ 3.4 × 1038, respectively. The machine epsilon is
εM = 2−23 ≈ 1.2 × 10−7. This means that we should expect about seven signifi-
cant decimal digits.

1 8 23
σ e m

Figure 1.7 The IEEE single format.

The double format consists of 64 bits, of which 11 bits correspond to
the exponent and the remaining 52 bits represent the mantissa, that is, we have
{Fd , Ed , Md} = {64, 11, 52}. The smallest and largest positive normal numbers
in double format are seen to be N n

min = 2−1022 ≈ 2.2 × 10−308 and N n
max =

(2 − 2−52) × 21023 ≈ 21024 ≈ 1.8 × 10308, respectively. The machine epsilon is

Copyrighted Material

COMPUTER ARITHMETIC 17

Table 1.1 The most common IEEE formats

single double extended
Format width in bits 32 64 ≥ 79
Exponent width in bits 8 11 ≥ 15
Precision p 24 53 ≥ 64
Exponent bias +127 +1023 unspecified
Maximal exponent +127 +1023 ≥ +16383
Minimal exponent −126 −1022 ≤ −16382

εM = 2−52 ≈ 2.2 × 10−16, so we can expect about 16 significant decimal digits
from the double format.

1 11 52
σ e m

Figure 1.8 The IEEE double format.

1.5.2 The extended Format

In contrast to the single and double formats, the IEEE standard does not spec-
ify absolute parameters for the extended format. Instead, minimal requirements
are given, and it is up to each individual manufacturer to decide the precise param-
eters to be used. The requirements for the three formats are illustrated below.

Considering that the extended format is not precisely specified, it is rather
unfortunate that it has become the most commonly used format. To make matters
worse, the non-expert user is often unaware of this fact. The reason for this state
of affairs is that almost all computers perform intermediate computations in the
widest registers available to them. Even the simplest computation, involving only
two double type variables, will be converted to and performed in extended
format, after which the result is rounded back to the double format. This can
(and often does) lead to quite unexpected results, which are very hard to “debug”
(see Example 1.6.1). In light of this, we will spend quite some time describing the
various “flavors” of the extended format.

Let us begin with the 128-bit extended format, which is provided on the
SPARC architecture. This format follows the generic mold described in the pre-
vious section, with parameters {Fe, Ee, Me} = {128, 15, 112}. Thus, the smallest
and largest positive normal numbers in the 128-bit extended format are seen to
be N n

min = 2−16382 ≈ 3.4 × 10−4932 and N n
max = (2 − 2−112) × 216383 ≈ 216384 ≈

1.2× 104932, respectively. The machine epsilon is εM = 2−112 ≈ 1.9× 10−34. This
means that we should expect about 34 significant decimal digits from the 128-bit
extended format.

1 15 112
σ e m

Figure 1.9 The SPARC 128-bit extended format.

Copyrighted Material

18 CHAPTER 1

In contrast to SPARC, the Intel x86 and Pentium architectures provide an 80-bit
extended format, made up by ten 8-bit bytes.8 This format consists of a 1-bit
sign, a 15-bit (biased) exponent, and a 64-bit mantissa. In the 64-bit mantissa no
hidden bit is employed, which leads to some minor peculiarities.

Consider the 80-bit string [σ ; e1e2 . . . e15;m0m1m2 . . . m63]. Let E = (e1e2 . . .

e15)2 and M = (0.m1m2 . . . m63)2. Then the floating point number x represented
by the string is decoded as follows:

(a) if m0 = 1, E = 32767, and M �= 0, then x = NaN;
(b) if m0 = 1, E = 32767, and M = 0, then x = (−1)σ Inf;
(c) if m0 = 1 and 0 < E < 32767, then x = (−1)σ 1.M × 2E−16383;
(d) if m0 = 0, E = 0, and M �= 0, then x = (−1)σ 0.M × 2−16382;
(e) if m0 = 0, E = 0, and M = 0, then x = (−1)σ × 0;
(f) if m0 = 0 and 0 < E < 32767, then x is not defined;
(g) if m0 = 1 and E = 0, then x = (−1)σ 1.M × 2−16382.

The numbers corresponding to case (g) are called pseudo-subnormal numbers.
These are never generated as results but may appear as operands, in which case
they are implicitly converted to the corresponding normal numbers as in (c).

The smallest and largest positive normal numbers in the 80-bit extended for-
mat are seen to be N n

min = 2−16382 ≈ 3.4 × 10−4932 and N n
max = (2 − 2−63) ×

216383 ≈ 216384 ≈ 1.2× 104932, respectively. The machine epsilon is εM = 2−63 ≈
1.1× 10−19. This means that we should expect about 19 significant decimal digits
from the 80-bit extended format.

1 15 64
σ e m

Figure 1.10 The Intel 80-bit extended format.

The IBM S/390 G5 series, which uses a hexadecimal base, has hardware support
for the IEEE formats with parameters matching those of the SPARC (see [SK99]).
The CRAY T90 series has also moved toward the IEEE formats but with some im-
portant exceptions. First, there is a slight linguistic discrepancy: the CRAY
single format is 64 bits wide and thus corresponds to the IEEE double. Sim-
ilarly, the CRAY double format is 128 bits wide and therefore corresponds to
the IEEE extended. What is more serious is that the CRAY architecture does
not treat subnormal numbers according to the IEEE standard. In fact, all subnormal
numbers are forced to zero (see [Ga96]). As we have seen, this leads to the violation
of several important mathematical laws. To further confuse matters, the Macintosh
PowerPC Numerics Environment provides a double-double format that is 128 bits
wide. The exponent field, however, is only 11 bits wide, which is lower than the
requirement for an IEEE extended format. The double-double is implemented
in software combining two double formats in a quite complicated manner.

In Table 1.2, we list some important facts about the various formats. Here, m-bits
denotes the number of bits reserved for the mantissa, and e-bits corresponds to the
exponent field.

8Under the UNIX System V operating system, however, the format is made up by three 32-bit words,
leaving the 16 highest addressed bits unused.

Copyrighted Material

COMPUTER ARITHMETIC 19

Table 1.2 Summary of the most common IEEE formats

format bits m-bits e-bits N s
min N n

max

single 32 23+ 1 8 1.4× 10−45 3.4× 1038

double 64 52+ 1 11 4.9× 10−324 1.8× 10308

INTEL extended 80 64 15 3.6× 10−4951 1.2× 104932

SPARC extended 128 112+ 1 15 6.5× 10−4966 1.2× 104932

1.6 EXAMPLES OF FLOATING POINT COMPUTATIONS

A common way to determine the accuracy of a specific computation is to gradually
increase the precision until the result stabilizes. If adding more bits to the floating
point representation does not alter the result of the computation, one usually accepts
the result as being correct. The following example illustrates the false sense of
security given by this approach.

Example 1.6.1 Consider the function

f (x, y) = 333.75y6 + x2(11x2 y2 − y6 − 121y4 − 2)+ 5.5y8 + x/(2y).

As observed in [Ru88], using FORTRAN on an IBM S/370 (β = 16), the
function evaluated at the point (x̃, ỹ) = (77617, 33096) produces the following
output:

type p f (x̃, ỹ)

REAL*4 24 1.172603 . . .

REAL*8 53 1.1726039400531 . . .

REAL*10 64 1.172603940053178 . . .

Using C or C++ (with gcc/g++) on an Intel Pentium III chip (β = 2), we get

type p f (x̃, ỹ)

float 24 178702833214061281280

double 53 178702833214061281280

long double 64 178702833214061281280

Using C or C++ (with gcc/g++) on a Sun UltraSPARC (β = 2), we get

type p f (x̃, ỹ)

float 24 257178416384078908222768939008

double 53 1.1726039400531786949244406059 . . .

long double 113 1.1726039400531786949244406059 . . .

Although all coefficients are exactly representable in base 2 (and thus in base
16), the rounding errors render the result useless. The correct answer is actu-
ally −0.8273960599 . . . , which means that we did not even get the sign right.

Copyrighted Material

20 CHAPTER 1

These discrepancies are due to the fact that the two terms T1 = 5.5ỹ8 and T2 =
333.75ỹ6 + x̃2(11x̃2 ỹ2 − ỹ6 − 121ỹ4 − 2) are very large in modulus and almost
cancel:

T1=+7917111340668961361101134701524942848

T2=−7917111340668961361101134701524942850.

Since the sum of these terms is T1 + T2 = −2, we are left with just

f (x̃, ỹ) = T1 + T2 + x̃/(2ỹ) = −2+ x̃/(2ỹ),

which gives

f (x̃, ỹ) = −2+ 77617

2× 33096
≈ −0.8273960599.

Of course, when computing with any of the above-mentioned floating points for-
mats, we have cancellation, and the sum of the two huge terms (both of magnitude
≈ 7.9× 1036) is evaluated as zero. This results in the approximate function value

f (x̃, ỹ) = 0+ 77617

2× 33096
≈ 1.1726039400531.

This, however, does not explain the results from the Intel Pentium III chip. In this
case, with no explicit instructions passed on to the compiler, all intermediate results
are converted and worked upon in the long double format by default.

For a more thorough analysis of this example, see [EW02] and [CV01].

The next example deals with the (seemingly) simple task of generating the graph
of a polynomial.

Example 1.6.2 Plot the graph, and search for roots of the polynomial

p(t) = t6 − 6t5 + 15t4 − 20t3 + 15t2 − 6t + 1.

MATLAB produces the non-smooth graph illustrated in Figure 1.11. This picture is
clearly wrong: a polynomial of degree n can have at most n−1 local extrema. Even
if we minimize the number of floating point operations by evaluating the polynomial
via Horner’s method

p(t) = ((((((t − 6)t + 15)t − 20)t + 15)t − 6)t + 1),

the resulting graph is clearly not correct. Note, however, that we can factor the
polynomial as p(t) = (t − 1)6, which is (correctly) plotted as the smooth graph
in Figure 1.11. It follows that the graph should lie above the t-axis, except at the
multiple root t∗ = 1.

The reason why the computed values approximate the graph so poorly is that the
condition number9 of p(t) near t∗ = 1 is very large. Without going into explicit

9For functions, the condition number is the maximal value of the ratio between the relative errors in
the function and the relative errors in the argument:

κ(t, t�) = ∣∣ f (t)− f (t�)
f (t)

∣∣÷ ∣∣ t−t�
t

∣∣.
In the case of a differentiable function, we can let t tend to t� in the first factor, producing

κ(t, t�) ≈ | f ′(t�)| ÷ ∣∣ t−t�
t

∣∣.

Copyrighted Material

COMPUTER ARITHMETIC 21

0.995 0.996 0.997 0.998 0.999 1 1.001 1.002 1.003 1.004 1.005
−5

0

5

10

15

x 10
−15

expanded
Horner
factored

Figure 1.11 A smooth graph of a polynomial?

calculations, the condition number of p near t∗ is given by

κ(t, t�) ≈ 6

∣∣∣∣ t

t − t∗

∣∣∣∣ .
As t approaches the multiple root at t∗, we see that κ tends to +∞. A large condi-
tion number translates to poor accuracy, as is illustrated in Figure 1.11. Note that
this situation would not occur if the multiple root was positioned at 0 rather than 1.

The conclusion we draw is that function evaluations depend on the function rep-
resentation when computed over F. This is a difficult fact to accept for most math-
ematicians, who are used to computing over R.

After these unnerving examples, let us show how one can obtain rigorous math-
ematical statements using the computer. By utilizing the directed rounding modes,
we can enclose the exact result of certain computations. These techniques will be
generalized and studied in detail in Chapter 2.

Example 1.6.3 It is well-known that the infinite series S = ∑∞
k=1 k−2 has the

exact value π2/6. Assume for the moment that we are unaware of this, and suppose
that we need to find an approximation to S, say to 12 decimal places. Clearly,
we cannot sum an infinite number of terms on the computer, so let us split the series
into two pieces:

S =
∞∑

k= 1

k−2 =
N∑

k= 1

k−2 +
∞∑

k= N+1

k−2 = SN + S�
N .

Our strategy is now to bound the infinite part S�
N by mathematical means, whereas

we calculate the finite part SN using the computer.

Copyrighted Material

22 CHAPTER 1

In order to achieve 12 correct decimal places, we must ensure that the upper and
lower bounds for S�

N differ by at most 5× 10−13. By a simple geometric argument
(draw the picture), we have∫ ∞

N+1

dx

x2
< S�

N <

∫ ∞
N+1

dx

(x − 1)2
,

which produces the bounds 1
N+1 < S�

N < 1
N of width δN = 1

N (N+1)
. Taking N =

2 × 106 gives δN < 2.5 × 10−13, which should do nicely, assuming that we can
compute the finite part SN accurately.

So let N = 2 × 106, and compute the sum SN =
∑N

k=1 k−2 with double
precision, using the directed rounding modes. This produces the following output:

Rounded down: S_N = 1.644 933 566 626 364 25
Rounded up: S_N = 1.644 933 567 070 448 80.

As is plain to see, the results differ already in the ninth decimal. Since all terms are
positive, however, the IEEE standard guarantees that the exact result is bounded
from below by the result obtained when always rounding down. Analogously, the
exact result is bounded from above by the result obtained when always rounding
up. Thus we can enclose the exact value of SN in the interval

[1.64493356662636425, 1.64493356707044880]
def= 1.64493356707044880

662636425.

As the number of terms to be summed is known in advance, we can get better
accuracy by adding the terms in increasing order (can you explain why?). Doing
so yields the results

Rounded down: S_N = 1.644 933 566 848 350 46
Rounded up: S_N = 1.644 933 566 848 352 46,

which now differ in the fifteenth decimal. Once again, we know that the exact value
of SN is contained in the interval

[1.64493356684835046, 1.64493356684835246] = 1.64493356684835246
046,

which allows us to refine our numerical enclosure of the partial sum:

SN ∈ 1.64493356684835246
046 ⊂ 1.64493356707044880

662636425.

Combining this information with the fact that 1
N+1 < S�

N < 1
N produces the final

enclosure:

S ∈ 1.64493406684835253
10028,

which is correct to 12 decimal places. Compare this to the “exact” value S =
π2/6 ≈ 1.64493406684822630, where we have approximated π by its 50 leading
digits.

It is exactly this mixture of mathematics and properly rounded numerical compu-
tations that opens the door to validated numerics. As we have seen, these techniques
allow us to construct computer-aided mathematical proofs, just like our recent proof
that all digits of the approximation S ≈ 1.644934066848 are correct.

Copyrighted Material

COMPUTER ARITHMETIC 23

1.7 COMPUTER LAB I

Problem 1. Write a program that computes the factorial n!
def= 1 · 2 · · · n of a given

integer n. Use your program to compute the 40 first factorials. Do you notice any-
thing strange? If so, try to explain what is happening.

Problem 2. Write a program that computes the smallest positive machine repre-
sentable number ηM , and the machine epsilon εM . What are the values you get?
Try to print them in hexadecimal form, too (see the code segment in Listing 1.1).

Problem 3. (a) Find an IEEE double-precision floating point number x ∈ (1, 2)

such that x ⊗ 1
x �= 1. (b) Find the smallest such number (possibly by a brute force

search).

Problem 4. Define the function f (x, y) = 9x4 − y4 + 2y2. Your objective is to
compute f (40545, 70226). Write a program that evaluates the function using each
of the formats int, float, and double. What is the correct answer?

Problem 5. Write a program that switches the rounding mode on your computer.
(Hint: for C/C++ programs, use the header file round.h listed in Listing 2.1.
MATLAB programs can use the file setround.m from Listing 2.2.) Make your
program compute 1/10 in various rounding modes. Make sure you output enough
decimals or, even better, print the results in hexadecimal.

Problem 6. Write a small interval arithmetic routine supporting the arithmetic oper-
ations with directed rounding. Use the routine to compute F([1, 2]) and G([1, 2]),
where f (x) = 7x−(x+1)2

3x and g(x) = 7x−(x+1)2

3x−2 , respectively.

Listing 1.1. A simple Hex printer for C/C++ codes

1 /* A function for printing in Hex format. */
2 #include <iostream>
3 using namespace std;
4
5 #define HI_BITS 1 //Assumes "Little Endian" storage. Swap
6 #define LO_BITS 0 //these two on a "Big Endian" system.
7
8 void printHex(double x) {
9 cout << hex << ((int *) &x)[HI_BITS] << " "

10 << hex << ((int *) &x)[LO_BITS] << endl;
11 }

Copyrighted Material

Chapter Two

Interval Arithmetic

In this chapter, we will briefly describe the fundamentals of interval arithmetic.
We will also discuss how to implement the arithmetic in a programming
environment.

Simply put, interval arithmetic is an arithmetic for inequalities. To illustrate this
point, let us assume that we want to compute the area of a rectangle with side
lengths
1 and
2. Given the measurements
1 = 10.3 ± 0.1 and
2 = 4.4 ± 0.2,
what can we say about the area A =
1 ·
2? If we express our measurements in
terms of the bounds |
1− 10.3| ≤ 0.1 and |
2− 4.4| ≤ 0.2, then (using the triangle
inequality) all we can say is that |
1 ·
2−10.3·4.4| ≤ 0.2·10.3+0.1·4.4+0.1·0.2,
that is, |A− 45.32| ≤ 2.52. If, on the other hand, we view the measurements as the
inequalities 10.2 ≤
1 ≤ 10.4 and 4.2 ≤
2 ≤ 4.6, the optimal answer is obvious:
the area must satisfy 42.84 = 10.2 ·4.2 ≤ A ≤ 10.4 ·4.6 = 47.84, which translates
into the slightly improved bound |A − 45.34| ≤ 2.5.

1

2

Figure 2.1 A rectangle with sides
1 and
2.

The calculations in the latter case can be summarized as a single multiplication
of two intervals:

[10.2, 10.4]× [4.2, 4.6] = [42.84, 47.84].

Interval arithmetic justifies this extension of the real arithmetic and provides an
elegant means of computing with inequalities. For a concise reference on this topic,
see [Mo66], [Mo79], [AH83], [Ne90], or [MK09]. Early references are [Yo31],
[Dw51], [Wa56], [Su58], and [Mo59].

2.1 REAL INTERVALS

In what follows, our basic elements will be closed and bounded intervals of the real
line. We will adopt the shorthand notation

a = [a, a] = {x ∈ R : a ≤ x ≤ a}

Copyrighted Material

