
1

Introduction: What Are the Extraordinary Ideas
Computers Use Every Day?

This is a gift that I have . . . a foolish extravagant spirit, full of
forms, figures, shapes, objects, ideas, apprehensions, motions, rev-
olutions.

—William Shakespeare, Love’s Labour’s Lost

How were the great ideas of computer science born? Here’s a selec-
tion:

• In the 1930s, before the first digital computer has even been
built, a British genius founds the field of computer science,
then goes on to prove that certain problems cannot be solved
by any computer to be built in the future, no matter how fast,
powerful, or cleverly designed.

• In 1948, a scientist working at a telephone company publishes a
paper that founds the field of information theory. His work will
allow computers to transmit a message with perfect accuracy
even when most of the data is corrupted by interference.

• In 1956, a group of academics attend a conference at Dart-
mouth with the explicit and audacious goal of founding the
field of artificial intelligence. After many spectacular successes
and numerous great disappointments, we are still waiting for
a truly intelligent computer program to emerge.

• In 1969, a researcher at IBM discovers an elegant new way to
structure the information in a database. The technique is now
used to store and retrieve the information underlying most
online transactions.

• In 1974, researchers in the British government’s lab for secret
communications discover a way for computers to communicate
securely even when another computer can observe everything
that passes between them. The researchers are bound by gov-
ernment secrecy—but fortunately, three American professors

1

Copyrighted Material

2 Chapter 1

independently discover and extend this astonishing invention
that underlies all secure communication on the internet.

• In 1996, two Ph.D. students at Stanford University decide to
collaborate on building a web search engine. A few years later,
they have created Google, the first digital giant of the internet
era.

As we enjoy the astonishing growth of technology in the 21st cen-
tury, it has become impossible to use a computing device—whether
it be a cluster of the most powerful machines available or the latest,
most fashionable handheld device—without relying on the funda-
mental ideas of computer science, all born in the 20th century. Think
about it: have you done anything impressive today? Well, the answer
depends on your point of view. Have you, perhaps, searched a cor-
pus of billions of documents, picking out the two or three that are
most relevant to your needs? Have you stored or transmitted many
millions of pieces of information, without making a single mistake—
despite the electromagnetic interference that affects all electronic
devices? Did you successfully complete an online transaction, even
though many thousands of other customers were simultaneously
hammering the same server? Did you communicate some confiden-
tial information (for example, your credit card number) securely over
wires that can be snooped by dozens of other computers? Did you
use the magic of compression to reduce a multimegabyte photo
down to a more manageable size for sending in an e-mail? Or did
you, without even thinking about it, exploit the artificial intelligence
in a hand-held device that self-corrects your typing on its tiny key-
board?

Each of these impressive feats relies on the profound discoveries
listed earlier. Thus, most computer users employ these ingenious
ideas many times every day, often without even realizing it! It is the
objective of this book to explain these concepts—the great ideas of
computer science that we use every day—to the widest possible audi-
ence. Each concept is explained without assuming any knowledge of
computer science.

ALGORITHMS: THE BUILDING BLOCKS OF THE GENIUS AT
YOUR FINGERTIPS

So far, I’ve been talking about great “ideas” of computer science,
but computer scientists describe many of their important ideas as
“algorithms.” So what’s the difference between an idea and an algo-
rithm? What, indeed, is an algorithm? The simplest answer to this

Copyrighted Material

Introduct ion 3

4844978
+3745945

4844978
+3745945

3

1 1 1

23

4844978
+3745945

The first two steps in the algorithm for adding two numbers.

question is to say that an algorithm is a precise recipe that speci-
fies the exact sequence of steps required to solve a problem. A great
example of this is an algorithm we all learn as children in school:
the algorithm for adding two large numbers together. An example is
shown above. The algorithm involves a sequence of steps that starts
off something like this: “First, add the final digits of the two numbers
together, write down the final digit of the result, and carry any other
digits into the next column on the left; second, add the digits in the
next column together, add on any carried digits from the previous
column…”—and so on.

Note the almost mechanical feel of the algorithm’s steps. This is, in
fact, one of the key features of an algorithm: each of the steps must
be absolutely precise, requiring no human intuition or guesswork.
That way, each of the purely mechanical steps can be programmed
into a computer. Another important feature of an algorithm is that
it always works, no matter what the inputs. The addition algorithm
we learned in school does indeed have this property: no matter what
two numbers you try to add together, the algorithm will eventually
yield the correct answer. For example, although it would take a rather
long time, you could certainly use this algorithm to add two 1000-
digit numbers together.

You may be a little curious about this definition of an algorithm
as a precise, mechanical recipe. Exactly how precise does the recipe
need to be? What fundamental operations are permitted? For exam-
ple, in the addition algorithm above, is it okay to simply say “add the
two digits together,” or do we have to somehow specify the entire set
of addition tables for single-digit numbers? These details might seem
innocuous or perhaps even pedantic, but it turns out that nothing
could be further from the truth: the real answers to these questions
lie right at the heart of computer science and also have connections
to philosophy, physics, neuroscience, and genetics. The deep ques-
tions about what an algorithm really is all boil down to a proposi-
tion known as the Church–Turing thesis. We will revisit these issues
in chapter 10, which discusses the theoretical limits of computa-
tion and some aspects of the Church–Turing thesis. Meanwhile, the

Copyrighted Material

4 Chapter 1

informal notion of an algorithm as a very precise recipe will serve us
perfectly well.

Now we know what an algorithm is, but what is the connection to
computers? The key point is that computers need to be programmed
with very precise instructions. Therefore, before we can get a com-
puter to solve a particular problem for us, we need to develop an
algorithm for that problem. In other scientific disciplines, such as
mathematics and physics, important results are often captured by
a single formula. (Famous examples include the Pythagorean theo-
rem, a2+b2 = c2, or Einstein’s E =mc2.) In contrast, the great ideas
of computer science generally describe how to solve a problem—
using an algorithm, of course. So, the main purpose of this book is
to explain what makes your computer into your own personal genius:
the great algorithms your computer uses every day.

WHAT MAKES A GREAT ALGORITHM?

This brings us to the tricky question of which algorithms are truly
“great.” The list of potential candidates is rather large, but I’ve used
a few essential criteria to whittle down that list for this book. The
first and most important criterion is that the algorithms are used
by ordinary computer users every day. The second important cri-
terion is that the algorithms should address concrete, real-world
problems—problems like compressing a particular file or transmit-
ting it accurately over a noisy link. For readers who already know
some computer science, the box on the next page explains some of
the consequences of these first two criteria.

The third criterion is that the algorithms relate primarily to the
theory of computer science. This eliminates techniques that focus
on computer hardware, such as CPUs, monitors, and networks. It
also reduces emphasis on design of infrastructure such as the inter-
net. Why do I choose to focus on computer science theory? Part of my
motivation is the imbalance in the public’s perception of computer
science: there is a widespread belief that computer science is mostly
about programming (i.e., “software”) and the design of gadgets (i.e.,
“hardware”). In fact, many of the most beautiful ideas in computer
science are completely abstract and don’t fall in either of these cat-
egories. By emphasizing these theoretical ideas, it is my hope that
more people will begin to understand the nature of computer science
as an intellectual discipline.

You may have noticed that I’ve been listing criteria to eliminate
potential great algorithms, while avoiding the much more difficult
issue of defining greatness in the first place. For this, I’ve relied on

Copyrighted Material

Introduct ion 5

The first criterion—everyday use by ordinary computer
users—eliminates algorithms used primarily by computer
professionals, such as compilers and program verification
techniques. The second criterion—concrete application to a
specific problem—eliminates many of the great algorithms
that are central to the undergraduate computer science cur-
riculum. This includes sorting algorithms like quicksort,
graph algorithms such as Dijkstra’s shortest-path algorithm,
and data structures such as hash tables. These algorithms
are indisputably great and they easily meet the first crite-
rion, since most application programs run by ordinary users
employ them repeatedly. But these algorithms are generic:
they can be applied to a vast array of different problems. In
this book, I have chosen to focus on algorithms for specific
problems, since they have a clearer motivation for ordinary
computer users.

Some additional details about the selection of algorithms for this book.
Readers of this book are not expected to know any computer science. But
if you do have a background in computer science, this box explains why
many of your old favorites aren’t covered in the book.

my own intuition. At the heart of every algorithm explained in the
book is an ingenious trick that makes the whole thing work. The
presence of an “aha” moment, when this trick is revealed, is what
makes the explanation of these algorithms an exhilarating experi-
ence for me and hopefully also for you. Since I’ll be using the word
“trick” a great deal, I should point out that I’m not talking about the
kind of tricks that are mean or deceitful—the kind of trick a child
might play on a younger brother or sister. Instead, the tricks in this
book resemble tricks of the trade or even magic tricks: clever tech-
niques for accomplishing goals that would otherwise be difficult or
impossible.

Thus, I’ve used my own intuition to pick out what I believe are the
most ingenious, magical tricks out there in the world of computer sci-
ence. The British mathematician G. H. Hardy famously put it this way
in his book A Mathematician’s Apology, in which he tried to explain to
the public why mathematicians do what they do: “Beauty is the first
test: there is no permanent place in the world for ugly mathematics.”
This same test of beauty applies to the theoretical ideas underlying
computer science. So the final criterion for the algorithms presented
in this book is what we might call Hardy’s beauty test: I hope I have

Copyrighted Material

6 Chapter 1

succeeded in conveying to the reader at least some portion of the
beauty that I personally feel is present in each of the algorithms.

Let’s move on to the specific algorithms I chose to present. The pro-
found impact of search engines is perhaps the most obvious example
of an algorithmic technology that affects all computer users, so it’s
not surprising that I included some of the core algorithms of web
search. Chapter 2 describes how search engines use indexing to find
documents that match a query, and chapter 3 explains PageRank—
the original version of the algorithm used by Google to ensure that
the most relevant matching documents are at the top of the results
list.

Even if we don’t stop to think about it very often, most of us are
at least aware that search engines are using some deep computer
science ideas to provide their incredibly powerful results. In con-
trast, some of the other great algorithms are frequently invoked
without the computer user even realizing it. Public key cryptogra-
phy, described in chapter 4, is one such algorithm. Every time you
visit a secure website (with https instead of http at the start of its
address), you use the aspect of public key cryptography known as
key exchange to set up a secure session. Chapter 4 explains how this
key exchange is achieved.

The topic of chapter 5, error correcting codes, is another class
of algorithms that we use constantly without realizing it. In fact,
error correcting codes are probably the single most frequently used
great idea of all time. They allow a computer to recognize and correct
errors in stored or transmitted data, without having to resort to a
backup copy or a retransmission. These codes are everywhere: they
are used in all hard disk drives, many network transmissions, on CDs
and DVDs, and even in some computer memories—but they do their
job so well that we are never even aware of them.

Chapter 6 is a little exceptional. It covers pattern recognition algo-
rithms, which sneak into the list of great computer science ideas
despite violating the very first criterion: that ordinary computer
users must use them every day. Pattern recognition is the class of
techniques whereby computers recognize highly variable informa-
tion, such as handwriting, speech, and faces. In fact, in the first
decade of the 21st century, most everyday computing did not use
these techniques. But as I write these words in 2011, the impor-
tance of pattern recognition is increasing rapidly: mobile devices
with small on-screen keyboards need automatic correction, tablet
devices must recognize handwritten input, and all these devices
(especially smartphones) are becoming increasingly voice-activated.
Some websites even use pattern recognition to determine what kind

Copyrighted Material

Introduct ion 7

of advertisements to display to their users. In addition, I have a
personal bias toward pattern recognition, which is my own area of
research. So chapter 6 describes three of the most interesting and
successful pattern recognition techniques: nearest-neighbor classi-
fiers, decision trees, and neural networks.

Compression algorithms, discussed in chapter 7, form another set
of great ideas that help transform a computer into a genius at our fin-
gertips. Computer users do sometimes apply compression directly,
perhaps to save space on a disk or to reduce the size of a photo
before e-mailing it. But compression is used even more often under
the covers: without us being aware of it, our downloads or uploads
may be compressed to save bandwidth, and data centers often com-
press customers’ data to reduce costs. That 5 GB of space that your
e-mail provider allows you probably occupies significantly less than
5 GB of the provider’s storage!

Chapter 8 covers some of the fundamental algorithms underlying
databases. The chapter emphasizes the clever techniques employed
to achieve consistency—meaning that the relationships in a database
never contradict each other. Without these ingenious techniques,
most of our online life (including online shopping and interacting
with social networks like Facebook) would collapse in a jumble of
computer errors. This chapter explains what the problem of consis-
tency really is and how computer scientists solve it without sacrific-
ing the formidable efficiency we expect from online systems.

In chapter 9, we learn about one of the indisputable gems of
theoretical computer science: digital signatures. The ability to “sign”
an electronic document digitally seems impossible at first glance.
Surely, you might think, any such signature must consist of digital
information, which can be copied effortlessly by anyone wishing to
forge the signature. The resolution of this paradox is one of the most
remarkable achievements of computer science.

We take a completely different tack in chapter 10: instead of
describing a great algorithm that already exists, we will learn about
an algorithm that would be great if it existed. Astonishingly, we
will discover that this particular great algorithm is impossible. This
establishes some absolute limits on the power of computers to solve
problems, and we will briefly discuss the implications of this result
for philosophy and biology.

In the conclusion, we will draw together some common threads
from the great algorithms and spend a little time speculating about
what the future might hold. Are there more great algorithms out
there or have we already found them all?

Copyrighted Material

8 Chapter 1

This is a good time to mention a caveat about the book’s style. It’s
essential for any scientific writing to acknowledge sources clearly,
but citations break up the flow of the text and give it an academic
flavor. As readability and accessibility are top priorities for this book,
there are no citations in the main body of the text. All sources are,
however, clearly identified—often with amplifying comments—in the
“Sources and Further Reading” section at the end of the book. This
section also points to additional material that interested readers can
use to find out more about the great algorithms of computer science.

While I’m dealing with caveats, I should also mention that a
small amount of poetic license was taken with the book’s title. Our
Nine Algorithms That Changed the Future are—without a doubt—
revolutionary, but are there exactly nine of them? This is debatable,
and depends on exactly what gets counted as a separate algorithm.
So let’s see where the “nine” comes from. Excluding the introduc-
tion and conclusion, there are nine chapters in the book, each cover-
ing algorithms that have revolutionized a different type of compu-
tational task, such as cryptography, compression, or pattern recog-
nition. Thus, the “Nine Algorithms” of the book’s title really refer
to nine classes of algorithms for tackling these nine computational
tasks.

WHY SHOULD WE CARE ABOUT THE GREAT ALGORITHMS?

Hopefully, this quick summary of the fascinating ideas to come has
left you eager to dive in and find out how they really work. But you
may still be wondering: what is the ultimate goal here? So let me
make some brief remarks about the true purpose of this book. It is
definitely not a how-to manual. After reading the book, you won’t be
an expert on computer security or artificial intelligence or anything
else. It’s true that you may pick up some useful skills. For example:
you’ll be more aware of how to check the credentials of “secure” web-
sites and “signed” software packages; you’ll be able to choose judi-
ciously between lossy and lossless compression for different tasks;
and you may be able to use search engines more efficiently by under-
standing some aspects of their indexing and ranking techniques.

These, however, are relatively minor bonuses compared to the
book’s true objective. After reading the book, you won’t be a vastly
more skilled computer user. But you will have a much deeper appre-
ciation of the beauty of the ideas you are constantly using, day in
and day out, on all your computing devices.

Why is this a good thing? Let me argue by analogy. I am definitely
not an expert on astronomy—in fact, I’m rather ignorant on the topic

Copyrighted Material

Introduct ion 9

and wish I knew more. But every time I glance at the night sky, the
small amount of astronomy that I do know enhances my enjoyment
of this experience. Somehow, my understanding of what I am look-
ing at leads to a feeling of contentment and wonder. It is my fer-
vent hope that after reading this book, you will occasionally achieve
this same sense of contentment and wonder while using a computer.
You’ll have a true appreciation of the most ubiquitous, inscrutable
black box of our times: your personal computer, the genius at your
fingertips.

Copyrighted Material

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [441.000 666.000]
>> setpagedevice

