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It grew out of the trio’s efforts to find solutions for a classic
mathematical problem—the “Traveling Salesman”
problem—uwhich has long defied solution by man, or by the fastest
computers he uses.

—IBM Press Release, 1964.

An advertising campaign by Procter & Gamble caused a stir among
applied mathematicians in the spring of 1962. The campaign featured
a contest with a $10,000 prize. Enough to purchase a house at the time.
From the officia rules:

Imagine that Toody and Muldoon want to drive around the country
and visit each of the 33 locations represented by dots on the contest
map, and that in doing so, they want to travel the shortest possible
route. You should plan a route for them from location to location
which will result in the shortest total mileage from Chicago, Illinois
back to Chicago, Illinois.

Police officer Toody and Muldoon navigated Car 54 in a popular
American television series. Their 33-city task is an instance of the traveling
salesman problem, or TSP for short. In its general form, we are given a
collection of cities and the distance to travel between each pair of them.
The problem is to fin the shortest route to visit each city and to return to
the starting point.

Is the general problem easy, hard, or impossible? The short answer is
that no one really knows. This is both the mystery and attraction of this
famous challenge in computational mathematics. And much more than a
struggling salesman is at stake. The TSP is the focal point of a larger debate
on the nature of complexity and possible limits to human knowledge. If you
are ready for action, then a sharp pencil and a clean piece of paper are all
you may need to give a helping hand to the salesman and possibly to make a
quantum leap in our understanding of the world in which he or she travels.
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Figure 1.1
Car 54 contest. Image
courtesy of Procter &

Gamble.

HERE’S THE CORRECT START...

OFFICIAL RULES ON REVERSE SIDE

(©PROCTER & GAMBLE 1962

Tour of the United States

Despite its nasty reputation, the TSP is an easy enough task from one
perspective: there are only finitel many possible routes through a given
set of cities. So a 1962-era mathematician could have checked each possible
Toody-Muldoon tour, recorded the shortest, sent the solution to Procter
& Gamble, and waited for the $10,000 check to arrive in the mail. A simple
and flawles strategy. With one possible catch. The number of distinct tours
is exceedingly large to consider checking one by one.

This difficult was noticed in 1930 by the Austrian mathematician and
economist Karl Menger, who firs brought the challenge of the TSP to
the attention of the mathematics community. “This problem is of course
solvable by finitel many trials. Rules that give a number of trials below the
number of permutations of the given points are not known.” A tour can
be specifie by announcing the order in which the cities are to be visited.
For example, if we label the 33 destinations of Toody and Muldoon as A
through Z and 1 though 7, that is, A for Chicago, B for Wichita, etc., then
we can record a possible tour as
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ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567

or any other arrangement of the 33 symbols. Each such arrangement is a
permutation of the symbols. The ordering implied by the arrangement is
circular, in that we travel from the last city back to the first So we can
record the same tour in 33 ways, depending on which city we put in the
firs position. To avoid such overcounting, we may as well always start with
city A. This leaves 32 choices for the second city, 31 choices for the third
city, and so on. Altogether, we have 32 x 31 x 30 X --- x 3 x 2 x 1 tours
to consider. This is the total number of permutations of 32 objects. It is
written as 32! and spoken as 32 factorial.

In the Procter & Gamble contest we can save effort by noting that the
distance to travel between Chicago and Wichita is the same as the distance
between Wichita and Chicago, and this is true also for every other pair of
cities. With such symmetry it does not matter in which direction we travel
around a tour, so an ordering

ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567
is the same as its reverse
7654321ZYXWVUTSRQPONMLKJIHGFEDCBA.

We can therefore cut down by half our count of the 33-city tours, leaving
only 32!/2 orderings to check. Before you go ahead and get out your
Ticonderoga #2 pencil, note that this is

131,565,418,466,846,765,083,609,006,080,000,000

distinct tours that we must examine.

These days we would of course employ a computer to run through the
list. So let’s choose a big one, the $133,000,000 IBM Roadrunner Cluster
of the United States Department of Energy. This 129,600-core machine
topped the 2009 ranking of the 500 world’s fastest supercomputers, deliv-
ering up to 1,457 trillion arithmetic operations per second.® Let’s assume
we can arrange the search for tours such that examining each new one
requires only a single arithmetic operation. We would then need roughly 28
trillion years to solve the 33-city TSP on the Roadrunner, an uncomfortable
amount of time, given that the universe is estimated to be only 14 billion
years old. No wonder Menger was unsatisfie with the brute-force solution
to the problem.

When considering the implications of this quick analysis, we must
keep in mind that Menger writes only that faster rules for solving the
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NpING the shortest route for a
Ftraveling salesman—starting from a
given city, visiting each of a series of
other cities, and then returning to his
original point of departure—is more
than an after-dinner teaser. For years
1t has baﬂied not only goods- and

visits 50 cities, for example, he has
10°2 (62 zeros) possible itineraries.
No electronic computer in existence
could sort out such a large number of
routes and find the shortest.

Three Rand Corp. mathematicians,
using Rand McNally road-map dis-
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to cover the 49 cities: 12,345 miles.

Figure 1.2
Drummer’s Delight. Newsweek,
July 26, 1954, page 74.

salesman problem are unknown, not that such rules are out of the question.
John Little and coauthors sum this up nicely in the following comment
on the Procter & Gamble contest. “A number of people, perhaps a little
over-educated, wrote the company that the problem was impossible—an
interesting misinterpretation of the state of the art.”* Little et al. went on to
describe a breakthrough in TSP solution methods, but they could not push
their computer codes far enough to actually solve the 33-city challenge. It
appears that no one in the country was able to produce a route that could be
guaranteed to be the shortest of all possible tours for Toody and Muldoon.

The 33-city problem was definitel a tough nut to crack, but if we turn
back the clock to 1954, then we fin a team that almost certainly would
be able to deliver the optimal route, together with a written guarantee that
their solution is the shortest. The team tackled a larger touring problem
through the United States, visiting a city in each of the 48 states, as well as
Washington, D.C. This particular challenge had been circulating through
the mathematics community since the mid-1930s. Its solution was reported
in Newsweek.”

Finding the shortest route for a traveling salesman—starting from
a given city, visiting each of a series of other cities, and then
returning to his original point of departure—is more than an
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after-dinner teaser. For years it has baffle not only goods- and
salesman-routing businessmen but mathematicians as well. If a
drummer visits 50 cities, for example, he has 10%% (62 zeros) possible
itineraries. No electronic computer in existence could sort out such
a large number of routes and fin the shortest.

Three Rand Corp. mathematicians, using Rand McNally road-map
distances between the District of Columbia and major cities in each
of the 48 states, have finall produced a solution. By an ingenious
application of linear programming—a mathematical tool recently
used to solve production-scheduling problems—it took only a few
weeks for the California experts to calculate “by hand” the shortest
route to cover the 49 cities: 12,345 miles.

The California experts were George Dantzig, Ray Fulkerson, and Selmer
Johnson, part of an exceptionally strong and influentia center for the new
fiel of mathematical programming, housed at the RAND Corporation in
Santa Monica.

The RAND team’s guarantee involves some pretty mathematics that we
take up later in the book. For now it is best to think of the guarantee as a
proof, like those we learned in geometry class. The Dantzig et al. proof es-
tablishes that no tour through the 49 cities can have length less than 12,345
miles. Matching the proof with their tour of precisely this length shows that
this particular instance of the TSP has been settled, once and for all.

Dantzig and company missed out on the $10,000 contest, but we can
report that a computer implementation of their ideas makes easy work of
the 33-city TSP. A shortest route for Toody and Muldoon is depicted in
Figure 1.3. Although no one in 1962 knew for certain that this was the
shortest possible tour, a number of contestants did fin and report this

Figure 1.3
Optimal tour for
Car 54 contest.
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same ordering. Among the people tied for firs place in the contest were
mathematicians Robert Karg and Gerald Thompson, who created a hit-
or-miss heuristic strategy that produced the winning solution.® And the
story has a happy ending, at least for the mathematics community. As a
tiebreaker, contestants were asked to write a short essay on the virtues of
one of Procter & Gamble’s products. Thompson’s prose on soaps took a
grand prize.

An Impossible Task?

The RAND team’s work put an end to the 48-states challenge, but it did
not finis off the TSP. One big success did not imply the team could handle
other, possibly larger, instances of the problem. In fact, if Las Vegas were
taking bets on the outcome, the odds-on favorite among mathematicians
would be that we will never fully solve the TSP. We must be careful here. By
a solution we mean an algorithm, that is, a step-by-step recipe for producing
an optimal tour for any example we may throw at it. Just findin the best
route through the United States or any other country does not do the job.

Picking up on the expected difficult of the general TSP challenge, the
science-fictio story “Antibodies”, by Charles Stross, chronicles doomsday
events following the discovery of an efficien solution method for the
salesman.” One can hope that a brilliant insight into the TSP will not signal
the end of the world as we know it, but it will certainly turn the planet
upside down and give it a good shake. To see why, let’s start with a series of
quotes.

‘It seems very likely that quite a different approach from any yet
used may be required for successful treatment of the problem. In
fact, there may well be no general method for treating the problem
and impossibility results would also be valuable.’

—Merrill Flood, 1956.8

‘T conjecture that there is no good algorithm for the traveling
salesman problem.’

—Jack Edmonds, 1967.°

‘In this paper we give theorems which strongly suggest, but do not
imply, that these problems, as well as many others, will remain
intractable perpetually.’

—Richard Karp, 1972.1
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The authors of these remarks are three giants of traveling-salesman
research. Merrill Flood rallied support for the problem in the 1940s; more
than anyone else, Flood is responsible for the emergence of the TSP as a
fundamental topic of study. Discussing the state of the problem in 1956,
Flood firs raised the possibility that efficien methods may simply never
exist. This point was hammered home by Jack Edmonds a decade later
in what amounts to a mathematical bet against the hope for a general
solution method. Edmonds was modest in describing the support for his
bet: “My reasons are the same as for any mathematical conjecture: (1) It
is a legitimate mathematical possibility, and (2) I do not know.” But he
is teasing us with these words: Edmonds is one of the profound thinkers
in twentieth-century mathematics and he certainly had something deep in
mind when placing money against the TSP. Five years later, the true nature
of the bet was made clear in a publication by the great computer scientist
Richard Karp, connecting the TSP with a host of other computational
problems. We save the details of Karp’s theory for chapter 9, but a quick
account will be enough to understand why the characters of “Antibodies”
shuddered at the announcement of a fast TSP algorithm.

Good and Bad Algorithms

When Edmonds writes “good algorithm,” he uses the word good in the
same way as you and I: an algorithm is good if it can solve problems in an
amount of time we fin acceptable. For this to make sense in mathematics,
however, he had to make “good” into a formal notion. Clearly, we cannot
expect every example of the TSP to be solved, say, in under a minute by a
human or by one of our machines. We must at least be willing to allow for
the solution time to grow as the number of cities grows. The point to be
decided is what rate of growth is acceptable.!!

Figure 1.4

Jack Edmonds, 2009.
Photograph courtesy
of Marc Uetz.
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Table 1.1
Running time on a 10°-operations-per-second computer.
n=10 n=25 n=>50 n=100
n 0.000001 seconds 0.00002 seconds 0.0001 seconds 0.001 seconds
2" 0.000001 seconds 0.03 seconds 13 days 40 trillion years

Let’s use the symbol n to indicate the size of a problem; for the TSP
this is the number of cities. Reading a list of locations to visit takes time
proportional to #, so a tough manager might demand that we produce
an optimal tour also in time proportional to n. Such a manager would be
wildly optimistic. Edmonds himself allows for faster rates of growth in the
running time, but with an insightful break between good and bad. A good
algorithm is one that comes with a guarantee to complete its work in time
at most proportional to #* for some power k. The power k can be any value,
such as 2, 3, or more, but it must be a fixe number—it cannot increase as
n gets larger. Thus, a growth rate of n° is good, but growth rates of n” and
2" are bad. To give you a feeling for this, in table 1.1 we have calculated the
running times for a few values of 7, assuming a computer can handle 10°
instructions per second. If n = 10, the bad algorithm is fine But you don’t
want to be stuck behind a 2" algorithm if n gets up to 100 or so.

Edmonds’s formal notion of “good” might not always agree with
our intuition. An algorithm that requires n'%% steps is not appealing if
we need to solve an instance of the TSP with 100 cities. Nonetheless,
his idea revolutionized the study of computing. The precise good/bad
dichotomy creates real targets for mathematicians, fueling great interest in
computational issues. And on the practical side, once a problem is shown
to have a good algorithm, researchers pull out all stops in a race to decrease
the value of the power k, typically getting down to running-time bounds
proportional to n%, n®, or n*, and computer codes capable of handling large
instances.

BRUTE-FORCE DYNAMIC )
SOLUTTON: PROGRAMMING SELUNG ON EBAY:
Figure 1.5 0(n?) ALGOR”;H'\:)S" o(1)
Travelling Salesman ’ o) (n 2 ) sn NG
LL WORKI
Problem. Image ON YOUR ROUTE?
courtesy of Randall \
Munroe, xkcd.com. ~
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Unfortunately for TSP fans, no good algorithm is known for the
problem. The best result thus far is a solution method, discovered in 1962,
that runs in time proportional to #%2". Although not good, this growth rate
is much smaller than the total number of tours through # points, which we
know is (n — 1)!/2, perhaps satisfying the curiosity of Menger.

The Complexity Classes P and NP

Edmonds’s dichotomy carries over to computational problems, dividing
them into those for which good algorithms exist and those for which they
do not. The former problems are the ones we like, and they are known
collectively as the class P.

Why P and not G? Well, researchers were not entirely comfortable
with the emotional charge that comes with the word “good,” and it became
standard to use the term polynomial-time algorithm. So ‘P for polynomial.

The definitio of P is clear-cut, but it can be tricky to tell whether
or not a given problem belongs to this “good” class. It may well be that
the TSP is in P and we just haven’t yet discovered the good algorithm
to prove its membership. A glimmer of hope is that at least we know
a good tour when we see one. Indeed, suppose our challenge is to fin
a tour, say, of length less than 100 miles. If someone hands us such a
solution, then we can check easily that it does indeed beat the 100-mile
target. This property makes the TSP a member of the class known as NP,
consisting of all problems for which we can check the correctness of a
solution in polynomial time. The pair of letters stands for non-deterministic
polynomial. The unusual name aside, this is a natural class of problems:
when we make a computational request, we ought to be able to check that
the result meets our specifications

The Big Question

Could it be that P and NP are two names for the same class of problems?
It is possible. An approach for proving this was laid out in a breakthrough
result by Stephen Cook in 1971. (No relation to me, although I have enjoyed
a number of free dinners due to mistaken identity.) Cook’s Theorem states
that there exists a problem in /P such that if we have a good algorithm
for this single problem, then there is a good algorithm for every problem in
NP. In fact, Cook, Karp, and others have shown that there are many such
NP-complete problems, the most prominent being the TSP itself.

Finding a good algorithm for an A'P-complete problem would show
that P is equal to A'P. Thus, the firs person to discover a general method
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for the TSP will bring home considerably more cash than the winner of
the Procter & Gamble contest: the Clay Mathematics Institute has offered a
$1,000,000 prize for either a proof or disproof that P = N'P.

The betting line is that the two problem classes are not equal, but there
is no great theoretical reason for thinking this is the case. It is simply a
feeling that equality is too much to ask: any problem we can formulate
in a verifiabl manner would immediately have an efficien method of
solution. In fact, current encryption systems make use of the assumption
that certain /P problems are difficul to solve. Internet commerce would
grind to a halt if there were quick algorithms for these members of N'P;
this would be like handing code breakers and hackers a Swiss Army knife
for snooping data.

The downfall of society in “Antibodies” was more insidious, however,
than simply failures in encryption—artificia intelligence programs sud-
denly became greatly more effective and took over their biological masters.
It seems probable we could deal with such pesky machines, and it is likely
the good consequences of P = N'P would greatly outweigh the bad. In a
2009 survey article, Lance Fortnow wrote: “Many focus on the negative,
that if 7 = N'P then public-key cryptography becomes impossible. True,
but what we will gain from P = AP will make the whole Internet look
like a footnote in history.”'* His argument is that optimization becomes
easy, thus salesmen can fin their shortest routes, factories can run at peak
capacity, airlines can manage their schedules without delays, and so on.
Simply put, we will better utilize the resources available in our world. Vastly
more powerful tools would also be available in science, economics, and
engineering, providing a steady flo of breakthroughs to keep Nobel Prize
committees busy for years to come. A rosy world, but the bets are against it.

The resolution of P versus /P is clearly one of the great challenges of
our time. In approaching an A/P-complete problem like the TSP, however,
it is important not to get too caught up in possible ramification of a
good solution method. The lofty implications aside, the problem comes
down to a simple routing of a salesman. An ingenious idea could turn
the scales.

One Problem at a Time

Until someone steps forward with a possibly earth-shattering result on the
general complexity question, what is to be done with the TSP? Well, facing
the salesman head on, the clear target is the solution of larger and more
difficul instances of the problem.
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The TSP is the standard bearer of a pragmatic school of research
known as algorithm engineering.!> The motto here is to not take no for
an answer. Theoretical considerations may suggest that once we reach
a certain size there exist instances of the TSP that necessarily take an
exorbitant amount of computation, but this does not imply that whenever
we see a specifi large example we must give up and resort to a rough guess
for a tour. Indeed, this take-no-prisoners attitude has led the community
to techniques and computer codes capable of solving examples of almost
unbelievable complexity.

Knocking off a previously unsolved challenge instance is a heralded
event among researchers, akin to scaling a new Himalayan peak or running
the 100-meter dash in record time. It is not that we have a desperate thirst
for the details of particular optimal tours, but rather a desperate need to
know that the TSP can be pushed back just a bit further. The salesman may
defeat us in the end, but not without a good fight

From 49 to 85,900

The heroes of the fiel are Dantzig, Fulkerson, and Johnson. Despite the
dawning of the computer age and a steady onslaught of new researchers
tackling the TSP, the 49-city example that Dantzig et al. solved by hand
stood as an unapproachable record for seventeen years. Algorithms were
developed, computer codes written, and research reports published, but
year after year their record held its ground. The long run was finall
snapped in 1971 by IBM researchers Michael Held and Richard Karp; the
same Karp who studied TSP impossibility results, clearly not satisfie with
theory alone. The test instance in this case consisted of 64 points dropped
at random into a square region, with travel costs set to the straight-line
distances between pairs of points.

The algorithm of Held and Karp reigned supreme for several years, with
a number of teams tweaking the method in attempts to squeeze out greater
performance. But the Dantzig et al. approach struck back in 1975, when
Panagiotis Miliotis eclipsed the Held-Karp record by employing a variant of
the original RAND idea to compute the shortest route through 80 random
points.

The Miliotis work hinted at the fact that the Dantzig et al. approach
might offer possibilities to push well beyond the expected limits of TSP
computation. This was reinforced shortly thereafter by theoretical studies
by Martin Grétschel and Manfred Padberg, who laid foundations for a great
expansion of the basic methodology. This pair of mathematicians went

11
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Figure 1.6
A new TSP record, 3,038 cities.
Discover, January 1993.

on to dominate the TSP scene for the next fiftee years. Their successes
began with Groétschel’s construction of an optimal 120-city tour through
Germany, published in his 1977 doctoral thesis. Padberg then teamed up
with IBM researcher Harlan Crowder, computing the optimal solution
for a 318-city example that arose in a circuit-board drilling application.
These two results, although great in their own right, turned out to be
only preliminary steps toward a series of startling announcements in 1987,
a banner year for the TSP. Working independently on opposite sides
of the Atlantic, Grotschel and Padberg led teams that solved in rapid
succession instances consisting of 532 cities in the United States, 666
locations in the world, and 1,002-city and 2,392-city drilling problems;
Grotschel worked with doctoral student Olaf Holland at the University of
Bonn, and Padberg worked with Italian mathematician Giovanni Rinaldi
at New York University.

Riding this wave of excitement, Vasek Chvatal and I decided to join the
TSP-computation race in early 1988. We were in the unenviable position
of trying to catch up to the fantastic efforts of Grétschel-Holland and
Padberg-Rinaldi, but we had the luxury of working alongside a broad and
active worldwide community delving ever deeper into the theoretical side
of the problem. Sifting through the growing body of research on the TSP
would provide powerful tools for use in a computational attack. Before
getting into the process, however, we made the single most important step
in the overall effort, recruiting to our team David Applegate and Robert
Bixby, two of the strongest computational mathematicians of our time.
Things started slowly and we had several false starts, but in 1992 we solved
arecord 3,038-city drilling problem, utilizing a large network of computers
working in parallel. With the pieces now in place, the team computed an
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Figure 1.7
Solution of an 85,900-city TSP arising
in a computer-chip application.
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Figure 1.8

Close-up view of a portion of the
85,900-city tour.

optimal 13,509-city tour through the United States in 1998, an optimal
24,978-city tour of Sweden in 2004, and, finally an optimal tour for an
85,900-city applied instance in 2006. The computer code used in these
solutions is called Concorde and it is available over the internet.

The 85,900 cities in the record problem represent locations of connec-
tions that must be cut by a laser to create a customized computer chip. The
TSP in this case models the movement of the laser from location to location.
Although movements are measured in fractions of an inch, the total travel
time was a major contributor to the chip’s production cost. The optimal
route for the laser is illustrated in figur 1.7, with a close-up view of a small
region in figur 1.8.
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Figure 1.9
Three tours of Germany.

The World TSP

The grid-like distribution of points evident in the 85,900-city example,
and in some of the drilling problems, does not really capture the traveling
spirit of the 48-states tour that started the long TSP research program.
But it is easy to appreciate the increased complexity of modern solutions
by examining the three tours through Germany illustrated in figur 1.9.
The small 33-city Commis tour was described in an 1832 book on tips
for salesmen; the blue tour is Grotschel’s 120-city record; and the tour in
the background is an optimal route through 15,112 cities, computed with
Concorde in 2001.
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The 15,112-city route may be the fnal tour of Germany, but for an
ultimate traveling challenge we put together a 1,904,711-city problem
consisting of every city, town, and village in the world, including several
research bases in Antarctica. Since 2001, this problem has withstood attacks
by Concorde and by computer codes from around the globe. If the million-
dollar Clay Prize is not to your taste, perhaps you would like to take on
this World TSP Challenge. At the time of publication of this book, the best-
known tour for the problem was produced by Danish computer scientist
Keld Helsgaun. His tour of length 7,515,790,345 meters was found on
October 10, 2010. This is almost certainly not the best-possible result, but
we do know that no tour can be of length less than 7,512,218,268 meters, a
bound computed with the Concorde code. Thus Helsgaun’s tour is no more
than 0.0476% longer than an optimal tour. That is close, but there is plenty
of room for shortcuts.

Drawing the Mona Lisa

An optimal tour for the World TSP would be fantastic, but we are very
likely more than a decade away from having the tools needed to make
a serious attempt at its solution. Fortunately, there is no shortage of
interesting problems to tackle along the way to conquering the world. A
pretty example is the 100,000-city Mona Lisa TSP displayed in figur 1.10.

Figure 1.10
Leonardo da

Vinci's Mona Lisa

as a TSP. Tour found
by Yuichi Nagata.

15
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This data set was developed in February 2009 by Robert Bosch, to create
a continuous-line drawing of da Vinci’s famous portrait. The current
best Mona Lisa tour was found by Yuichi Nagata of the Japan Advanced
Institute of Science and Technology. His tour is known to be at most
0.003% longer than an optimal solution. This is tantalizingly close, but we
are not yet home. As an incentive to anyone who might want to weigh in
on this problem, there is a $1,000 prize offered to the firs person who can
improve on Nagata’s tour. A nice trophy, but keep in mind that the real
goal of problem-by-problem challenges is to gather ideas for use in general
solution methods for the salesman, and beyond to application areas well
outside the TSP. New avenues of attack are the name of the game.

Road Map of the Book

The T-shirt displayed in f gure 1.11, with artwork by Jessie Brainerd, a
2007 Budapest Semester in Mathematics student, would be interpreted
immediately as the TSP by every recent graduate of applied mathematics
or computer science who is worth his or her salt.!* Study of the salesman is
a rite of passage in many university programs, and short descriptions have
even worked their way into recent texts for middle school students.

With the existing wide coverage of the problem, what am I trying to
accomplish with this book? The answer is simple: I plan to take the reader
on a path that goes well beyond basic familiarity of the TSP, moving right
up to current theory and state-of-the-art solution machinery. The ultimate
goal is to encourage readers to take up their own pursuit of the salesman,
with the hope that a knockout blow will come from an as yet unknown
corner.

Figure 1.11

The TSP on Halloween 2007.
Photograph courtesy of Jessie
Brainerd.
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We begin in chapter 2 by examining the roots of the salesman problem
from both the mathematical and applied perspectives; the presentation of
TSP history allows us to introduce basic themes picked up in later chapters.
This is followed, in chapter 3, by a selection of the many applications of
the TSP, including trip planning, genome sequencing, planet finding and
music arranging.

The heart of our technical treatment of the problem is the material
presented in chapters 4 through 7, followed by a discussion of how TSP
computer codes stack up to the task of solving large examples in chapter 8.

The $1,000,000 theoretical issue of a polynomial-time general method
for the TSP is presented in chapter 9. If cold cash is what you desire, this
is the chapter for you. I do not, however, reccommend jumping ahead, even
if your bank account is in desperate need of deposits. Indeed, the seeds of
a successful theoretical attack may well be in methods that have proved
themselves in the computational feld of play. And if you are going for
an impossibility result, you will need to handle the successful practical
techniques in your proof.

Moving away from direct mathematics, in chapter 10 we cover studies
on how humans, unaided by computers, go about solving the TSP; this area
brings the problem into the realm of psychologists and neuroscientists. In
chapter 11 we turn to the adoption of TSP tours in works of art, from the
beautiful abstract paintings of Julian Lethbridge to the Jordan curves of
Robert Bosch. Finally, chapter 12 wraps things up with a call for readers
to take up the TSP challenge.

Figure 1.12
Left: W. Cook, far left, and V. Chvatal, far right, presenting author J. P. Donleavy a chamber pot, 1987.
Photograph by Adrian Bondy. All rights reserved. Right: Postcard from J. P. Donleavy, 1987.
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Chapter 1

Bashing on Regardless

A bit of advice. When faced with an overwhelming number of slings and
arrows, Irish writer J. P. Donleavy’s character Rashers Ronald would vow
to “Bash on regardless.”’® This became the rallying cry of the computational
study of the TSP by Applegate et al. I recommend the reader, too, adopt this
attitude when approaching the problem. We will cover work of numerous
experts who have made huge advances, but the TSP remains essentially
open. A new point of view could be just what is needed to dramatically
alter our ability to tackle the salesman.





