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Basic Elasticity and Viscoelasticity

In the physically stressful environment there are three ways in which a material can 
respond to external forces. It can add the load directly onto the forces that hold 
the constituent atoms or molecules together, as occurs in simple crystalline (includ-
ing polymeric crystalline) and ceramic materials—such materials are typically very 
rigid; or it can feed the energy into large changes in shape (the main mechanism in 
noncrystalline polymers) and flow away from the force to deform either semiper-
manently (as with viscoelastic materials) or permanently (as with plastic materials).

1.1 Hookean Materials and Short-Range Forces

The first class of materials is exemplified among biological materials by bone and 
shell (chapter 6), by the cellulose of plant cell walls (chapter 3), by the cell walls 
of diatoms, by the crystalline parts of a silk thread (chapter 2), and by the chitin of 
arthropod skeletons (chapter 5). All these materials have a well-ordered and tightly 
bonded structure and so broadly fall into the same class of material as metals and 
glasses. What happens when such materials are loaded, as when a muscle pulls on a 
bone, or when a shark crunches its way through its victim’s leg?

In a material at equilibrium, in the unloaded state, the distance between adjacent 
atoms is 0.1 to 0.2 nm. At this interatomic distance the forces of repulsion between 
two adjacent atoms balance the forces of attraction. When the material is stretched 
or compressed the atoms are forced out of their equilibrium positions and are either 
parted or brought together until the forces generated between them, either of attrac-
tion or repulsion, respectively, balance the external force (figure 1.1). Note that the 
line is nearly straight for a fair distance on either side of the origin and that it eventu-
ally curves on the compression side (the repulsion forces obey an inverse square law) 
and on the extension side. With most stiff materials the extension or compression is 
limited by other factors (see section 1.6) to less than 10% of the bond length, fre-
quently less, so that the relationship between force and distance is essentially linear. 
When the load is removed, the interatomic forces restore the atoms to their original 
equilibrium positions.

It is a fairly simple exercise to extend this relationship to a material such as a crys-
tal of hydroxyapatite in a bone. This crystal consists of a large number of atoms held 
together by bonds. The behavior of the entire crystal in response to the force is the 
summed responses of the individual bonds. Thus one arrives at the phenomenon de-
scribed by Hooke as ut tensio, sic vis, “as the extension, so the force.” In other words, 
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2	 •  1 BASIC ELASTICITY AND VISCOELASTICITY  •

extension and force are directly and simply proportional to each other, and this rela-
tionship is a direct outcome of the behavior of the interatomic bond. However, when 
one is dealing with a piece of material it is obvious that measurements cannot conve-
niently be made of the interatomic distance (though they have been made using X-ray 
diffraction, which confirms the following). What is actually measured is the increase 
in length of the whole sample or a part of the sample (making the verifiable assump-
tion that in a homogeneous material one part will deform as much as the next). This 
difference is then expressed as a function of the starting length called the strain, f. 
Strain can be expressed in a number of ways, each offering certain advantages and 
insights into the processes of deformation. The most commonly encountered form is 
conventional, nominal, engineering, or Cauchy strain, which is the increase in length 
per unit starting length:

	 .
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D= 	 [Eq. 1.1]

This estimate of extension works well if the material is extended by no more than a 
tenth of its starting length. Strain is expressed either (as in this text) as a number (e.g., 
0.005) or as a percentage (e.g., 0.5%).

The force acting on each bond is a function of the number of bonds available to 
share the load. Thus if the area over which the force acts is doubled, then the load 
carried by each bond will be halved. It is therefore important, if one is to bring the 
data to the (notionally) irreducible level of the atomic bond, to express the force as 
a function of the number of bonds that are responding to it. In practice this means 
expressing the force as force divided by the area across which the force is acting, 
which is called the stress, v:

	 .
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v = 	 [Eq. 1.2]

However, just as with strain, this simple equation is suitable only for small extensions.
In SI units, the force is expressed in newtons (a function of mass and the accelera-

tion due to gravity: one newton is approximately the force due to 100 g, which can 
be produced by an average apple falling under the influence of gravity), the area in 

Figure 1.1. Stress–strain curve at the atomic 
level for a “perfect” material. The origin 
represents the equilibrium interatomic 
distance. On either side of the origin the curve 
is nearly straight.
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square meters. One newton acting over an area of one square meter is a pascal (Pa). 
Other units are in use in many parts of the world. For instance, in the United States 
the unit of force is the dyne (the force exerted by one gram under the influence of 
gravity), and the unit of area is the square centimeter. One dyne per square centimeter 
is one hundred-thousandth (10−5) of a pascal. Traditional engineers in Britain often 
use pounds and square inches as their measures of “force” and area.

The slope of the straight, or Hookean, part of the curve in figure 1.1 is characteris-
tic of the bond type and is a function of the energy of the bond. For the same reason, 
the ratio of stress to strain is a characteristic of a material. This ratio is the stiffness 
or Young’s modulus, E:

	 E
f
v= .	 [Eq. 1.3]

The units of E are the same as for stress, since strain is a pure number. Graphs show-
ing the relationship between stress and strain are conveniently plotted with the strain 
axis horizontal and the stress axis vertical, irrespective of whether the relationship 
was determined by stretching the test piece in a machine and recording the developed 
forces or by hanging masses onto the test piece and recording the extension. Do not 
be surprised if it takes a long time for the mental distinctions between stress and strain 
to become totally clear. Not only are the concepts surprisingly difficult to disentangle, 
but the confusion is compounded by their uncritical use in everyday speech.

One other characteristic of Hookean materials is that they are elastic. That is to say, 
they can be deformed (within limits) and will return to their original shape almost 
immediately after the force is removed (almost immediately because the stress wave 
travels through the material at the speed of sound in that material. Thus when you pull 
on the brake lever of your bicycle, the brake blocks begin to move a short time later, 
the time dependent partly on the speed of sound in the steel cable and partly on the 
length of the cable). This use of the word elastic must not be confused with the use 
of the term as in “elastic band,” where “elastic” is taken to mean highly extensible.

Young’s modulus is a measure of stiffness in simple extension or compression. 
There are ways of deforming a material that have different effects on the interatomic 
forces and therefore different effects on the material. Such a mode of deformation, 
frequently met, is shear. (Another mode of deformation—volume change, from 
which is derived the bulk modulus—is ignored here.) As with Young’s modulus, the 
shear modulus is defined as the ratio of stress to strain. The shear stress, x, is defined 
as (figure 1.2)

	
A
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S

x = .	 [Eq.1.4]

Figure 1.2. Conditions for the definition 
of one-dimensional shear stress 
(Eq. 1.4).
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4	 •  1 BASIC ELASTICITY AND VISCOELASTICITY  •

The shear strain is defined somewhat differently (figure 1.3). The strain, y, is mea-
sured in radians, and the shear modulus, G, is given by

	 G
y
x= .	 [Eq.1.5]

The simple picture given here is for isotropic materials whose structure and, there-
fore, mechanical response, is the same in all directions. Young’s modulus and the 
shear modulus in an isotropic material can be related to each other by the expression

	
2(1 )

G
E

o
= + ,	 [Eq.1.6]

where o is Poisson’s ratio. This important ratio is discussed at greater length in sec-
tion 4.3. A material that is Hookean in extension is usually Hookean in shear. The 
mathematics for high strain shear deformation is not considered here and, indeed, 
remains to be established!

1.2 Non-Hookean Materials and High Strains

With greater deformation, another form of strain—true or Hencky strain—is a better 
indicator of what is going on in the material. With true strain, each small extension 
is expressed as a fraction of the immediately preceding or instantaneous length. It is 
slightly more cumbersome to calculate,

	 (1 )ln ln
L

L l
H C

0

0f f
D= + = +d n ,	 [Eq.1.1a]

and has the curious property that the sample does not “remember” its strain his-
tory. True strain is an instantaneous measure of strain. Figure 1.4 compares true and 
conventional strain, showing that the mutual deviation is far greater in compression.

At larger strains (greater than 0.1 or so), Poisson’s ratio effects in an isotropic ma-
terial (section 4.3) will cause the sample to become narrower, reducing the area over 
which the force is being transmitted. This will cause the true stress to increase at a 
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τ Figure 1.3. Conditions for the definition 
of two-dimensional shear stress 
(Eq. 1.5).
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higher rate than the conventional stress (figure 1.5). However, since, as will be seen, 
Poisson’s ratio frequently varies with strain, especially with soft biological materials 
that are complex, extensible, and fibrous, it is not possible to give a universal formula 
for calculating true stress from the starting conditions. The cross-sectional area has to 
be measured at the particular strain for which the stress is to be calculated. To give you 
a feel for the relationship between engineering stress and true stress, assume that Pois-
son’s ratio varies in the same way as a rubber, that is to say, the volume of the material 
remains constant (for many biological materials a doubtful assumption). Thus if the 
cross-sectional area at any time is A, and A0 the area at zero strain (L0), then

	 ( )A L l A L0 0 0D+ = ,	 [Eq.1.2a]

so
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which relates the true stress to the apparent or engineering stress.
Both true and conventional methods of expressing stress and strain are used; in 

the small-strain elastic range, the conventional measures are more usually used and 
are more convenient, though not strictly accurate. However, at the strains that soft 

Figure 1.5. Comparison of true and conventional 
(“engineering”) stress plotted against conventional 
(“engineering”) strain.

Figure 1.4. Comparison of true and 
conventional (“engineering”) strain 
plotted against extension ratio.
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6	 •  1 BASIC ELASTICITY AND VISCOELASTICITY  •

biological materials reach, true stress and strain are the proper indicators of what 
is happening in the material, although these parameters are seldom used. When the 
material starts to yield (section 1.6), even true stress and strain are inadequate, since 
neither is uniform across the yield zone. Even so, it seems reasonable to use these 
measures rather than the conventional parameters, although finite element modeling 
is probably the preferred compromise. However, since all biological materials show 
some form of relaxation (section 1.4), an estimate of cross-sectional area for the 
calculation of true stress has to be made instantaneously. In practice, where such data 
are required, it is often found that the best technique is to record the test with a num-
ber of cameras using split-screen video and to make the necessary measurements of 
the specimen after the test is completed. This sort of complexity at the practical level 
goes a long way to explaining why there are so few data on biological materials in 
which true stress has been measured. When it is measured it is often found to be dis-
tributed nonuniformly, so that the assumption of affine (i.e., average or distributed) 
deformation is not valid.

1.3 The Energy Approach

It is often easier to consider elasticity not as stress and strain but as their product—
that is to say, energy. When material is deformed (stretched, perhaps), energy (usu-
ally referred to as strain energy) is stored in the deformation of its bonds, and it is 
this energy that brings the material back to its original shape—or perhaps not, since 
that energy can be dissipated in a number of ways, such as heat, sound, surface 
energy, plastic deformation, or kinetic energy. With a Hookean material the strains 
are relatively small, and all the energy is stored in stretching the interatomic bonds, 
termed the internal energy. However, if the material is made of relatively long and 
unrestrained molecules, the energy can also be stored in changes in their shape and 
mobility, termed the entropic energy. This is typical of the long-range elasticity ex-
hibited by rubbers, which can stretch up to six times their original length. When a 
rubbery material is deformed, its molecules lose mobility, and the energy that has 
been powering their random movements is dissipated as heat. If you stretch a rubber 
band while you hold it to your lip (very sensitive skin), you will detect an increase in 
temperature. Relax the band, and the molecules resume their motions, taking energy 
from their surroundings, and you will feel the band go cool. The entropic component 
can be characterized by this exchange of heat. In simple terms,

	 A U TS= − ,	 [Eq. 1.7]

where A is the Helmholtz free energy, U is the internal energy component, and –TS 
is the entropic component, made up of temperature, T, and entropy, S. Note that the 
entropic component is negative. If you increase the temperature of a material that 
relies on internal energy for its elastic behavior, it will expand, but an entropic-based 
material will contract. This is the corollary of the experiment with the rubber band.

To introduce external work (i.e., your stretching the material) we have to introduce 
force, f, multiplied by change in length, dl:
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	 dA PdV SdT f dl–= − + .	 [Eq. 1.8]

This formulation can now be developed to give the basis for measurement of the 
mechanical properties of a material at a variety of temperatures, which yields the 
relative contributions of the internal and entropic components of the elastic restoring 
force. But we need to see what this measurement means in terms of molecular inter-
actions, since this is the starting point for biology. How does the entropic component 
work at the molecular level?

A technical rubber is composed of very long chains (molecular weight of about 
105) of one or more monomer units, with each unit more or less freely jointed into 
the chain, so that each joint allows a wide range of movement. This motion is called 
“free rotation” about the bonds of the backbone and is what distinguishes a rubbery 
polymer from a crystalline one: in a crystalline polymer (or in areas of crystallin-
ity) the units cannot move freely because they are packed so closely, and rubbery 
behavior is impossible. In fact, it takes more than one monomer unit or residue to 
make a freely rotating unit or “random link,” because the monomer units are of a 
finite size and shape and so cannot move with absolute freedom without hitting their 
neighbors (“steric hindrance”). With paraffin chains with a tetrahedral valence angle 
it takes three C — C links to make up a freely rotating or equivalent random link; 
with cis-polyisoprene units, as in rubber made from the latex of Hevea brasiliensis, 
the number of monomer units per random link is 0.77, since there are four bonds to 
each isoprene unit (Treloar 1975). Under the influence of Brownian motion the free 
rotation of the equivalent random links about the backbone of the polymer allows the 
chain to assume a random conformation. In other words, there is no pattern to the 
angles that each link makes with its neighbor other than a statistical one. The fact that 
the molecules are in Brownian motion also leads to the concept of kinetic freedom, 
which is a way of saying that the chains are free to writhe in any direction. Brown-
ian motion is temperature dependent—as the temperature increases, the movement 
of the molecules and their subunits becomes more and more frenetic. Conversely, as 
the temperature decreases, the activity of the molecules slows until, finally, at a tem-
perature dependent on the particular rubber in question, it ceases altogether and any 
force that is exerted on the rubber meets the resistance of the covalent bonds linking 
the atoms, probably bending rather than stretching them. A rubber at the temperature 
of liquid nitrogen is Hookean and is said to be glassy. The temperature at which this 
phenomenon occurs is called the glass transition temperature.

At normal temperatures the rubber chains are writhing in Brownian motion. It is 
this writhing that produces the tension. Imagine that you hold one of these writhing 
molecules by the ends and try to pull it straight. You are trying, by doing work on 
the molecule, to decrease its entropy. If the temperature increases and the molecule 
writhes more violently, it opposes your efforts with greater force. As we shall see, 
short stretches of molecules of biological elastomers demonstrate this behavior. The 
rest of the molecules support and isolate these small sections. Thus biological elas-
tomers are only partly rubbery (implying that lengths of their molecules are capable 
of random movement; the remainder are organized and stiff). Biological elastomers 
(resilin, elastin, abductin, gluten, and doubtless others) have about the same stiffness 
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8	 •  1 BASIC ELASTICITY AND VISCOELASTICITY  •

(1 MPa) as rubber made from the latex of Hevea brasiliensis, but their ultimate strain 
is only about a fifth that of the cured (cross-linked) latex (depending on the degree of 
cross-linking). Biological elastomers are more complex still, since they are associ-
ated with water, which itself seems to contribute to the elastic mechanism.

1.3.1 Viscoelasticity: Stress, Strain, and Time

Many biological materials contain crystalline components. A few contain rubbers 
that are sufficiently well cross-linked to be analyzed in terms of rubber elasticity. 
But by far the greatest number, if not all, biological materials are viscoelastic to a 
greater or lesser extent. They have a viscous component. Thus although the mechani-
cal properties of crystalline materials and “ideal” rubbers, at constant temperature, 
can be described in terms of stress and strain, the mathematical description of visco-
elastic materials involves the introduction of a new variable—time.

Viscoelasticity and related phenomena are of great importance in the study of bio-
logical materials. Just as strain can be measured in more than one way, so the related 
rate of strain (i.e., the amount of strain per unit time) can be measured in a number 
of different ways (Ward 2004). Cauchy strain rate is given by dl/L0 dt; Hencky strain 
rate by dl/l dt. In each expression, dl is the infinitesimally small extension achieved 
during the short time dt, L0 is the length at zero time, and l is the length just before 
the present extension.

Viscosity, h, is defined as the ratio of shearing stress to velocity gradient (Newton’s 
law). Its equivalence to the shear modulus can be seen in Eq. 1.9; its definition is

	
/
/

dv dy
F A

h = ,	 [Eq. 1.9] 

which can be compared with the expression for the shear modulus, G:

	
/
/

G
y dx dy

F Ax= = .	 [Eq. 1.5a]

“Newtonian” viscosity is independent of strain or shear rate. This means that if the 
force applied to a Newtonian fluid is doubled, the shear rate will also be doubled. 
Non-Newtonian fluids are those that respond with a more or less than doubled shear 
rate, depending on whether they show shear thinning or shear thickening. Most bi-
ological materials show shear thinning, so that doubling the force will more than 
double the shear rate, thus making deformation of the material relatively easier at 
higher shear rates. The units of viscosity are kg m−1 s−1 or Pa s.

At this point it is necessary to point out that viscoelasticity is not plasticity, with 
which it is often confused. A viscoelastic material will return to its original shape 
after any deforming force has been removed (i.e., it will show an elastic response) 
even though it will take time to do so (i.e., it will have a viscous component to the 
response). A plastic material will not return to its original shape after the load is 
removed. In metals, plasticity is called ductility. It is, if you like, the converse of 
elasticity in that the energy of deformation is not stored but is entirely dissipated. A 
material can show a combination of elasticity and plasticity, in which case although 
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	 •  1.3 THE ENERGY APPROACH  •	 9

it partly returns to its original shape on removal of the load, some permanent defor-
mation or “set” remains owing to plastic deformation or molecular “slippage” of an 
irreversible nature (figure 1.6).

Two major types of experiment are performed on viscoelastic materials: transient 
and dynamic. Transient experiments involve deforming the material (by simple elon-
gation or in shear) and following the response of the material with time. There are 
two transient experiments. In one the material is loaded and the change of deforma-
tion with time is noted. This is the creep experiment. Under load, segments of the 
molecules of the material rotate and flow relative to one another at a rate controlled 
by the viscosity of the material, the stress, the temperature, and the time for which 
the material has been stressed. Figure 1.7 shows how the strain varies with constant 
(engineering) stress over a wide range of times after loading. The parameter J, ob-
tained by dividing the strain by the stress, is the compliance (roughly the inverse, 
or opposite, of stiffness) and is here further defined as the creep compliance, J(t). A 
compliant (or pliant) material is a nonstiff or soggy material. As a practical example, 
a retro-vinyl buff will choose a pickup cartridge with a “high-compliance” stylus 
mounting; the stylus presents minimum resistance to being moved by the irregulari-
ties that constitute the signal on the groove of the record. The molecular origin of the 
various regions of the compliance curve is discussed in section 1.5.

The other transient experiment is the stress-relaxation experiment, in which the 
material is deformed, and the force required to maintain the deformation at a constant 
value is measured as, with time, the molecules of the material move relative to one 

Figure 1.6. Stress–strain curves illustrating different 
types of behavior.

(t)
Figure 1.7. Creep compliance, J(t), as a 
function of time, t. The characteristic or 
retardation time is t.
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10	 •  1 BASIC ELASTICITY AND VISCOELASTICITY  •

another. Thus the stress required to hold the material at constant deformation dies 
away with time and is said to relax. Figure 1.8 shows how the stress varies with con-
stant (engineering) strain (the relaxation modulus, E(t) for simple extension, G(t) for 
shear) in a manner analogous to that for creep compliance. Note that the two transient 
experiments are possible because there are three variables—stress, strain, and time. It 
is therefore possible to plot a three-dimensional surface showing how these variables 
are interrelated.

The other major type of experiment is the dynamic one, in which either stress or 
strain (usually strain) is varied cyclically (usually sinusoidally for mathematical con-
venience) with time, and the response is measured at various different frequencies 
of deformation.

Transient experiments are usually easier to understand and will be described first. 
The assumptions made about the mechanical response of the material are similar for 
both transient and dynamic experiments.

There are three major ways of describing viscoelastic behavior, all interrelated. 
The first starts with the Boltzmann superposition principle and is sometimes called 
the integral representation of linear viscoelasticity because it defines an integral 
equation. The second way, which leads to a linear differential equation and is there-
fore called the differential representation, uses assemblages of (Hookean) springs 
and (Newtonian) viscous elements (dashpots) as models. The third method is based 
on assumptions about the molecules themselves. At this point you may find it easier 
to read the section on the behavior of the molecules of viscoelastic materials and then 
come to the phenomenological approach that follows. Either way you will need to 
read the following sections several times to see how all the different measurements 
and ideas fit together.

I cannot emphasize too much that both the integral and differential models are 
only models and are not explanations. A number of papers on biological materials 
interpret the behavior of the material solely and finally in terms of springs and dash-
pots, as if that were an answer. The models are like the hangman’s noose—they serve 
to concentrate the mind but not much more. With the use of mathematical expres-
sions derived from consideration of the models it is possible to derive constants that 
can be used as a basis for comparison or prediction; but it is highly unlikely that a 
biological material can be described in terms of a single spring-and-dashpot unit. The 
other major caveat in the theory of viscoelasticity that follows is that both the models 
and their mathematical representations rely on linearity of response of both elastic 

(t)
Figure 1.8. Relaxation modulus, G(t), as 
a function of time, t. The characteristic or 
relaxation time is t.
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and viscous components. This is normally considered to be attainable only at strains 
of less (usually much less) than 0.01, but nearly all biological materials (and most 
artificial polymers) are not only nonlinear in response but normally function at high 
and extremely high (0.5+) strains. The models for viscoelasticity are not valid under 
these conditions. This is a severe limitation and one that is not commonly recognized. 
Thus much work on artificial and natural polymers is of dubious value, because it 
applies linear, small-strain models to nonlinear, large-strain materials. That such data 
may well often be internally consistent is no argument for the acceptance of the lin-
ear interpretation; it may merely be coincidence. The mathematics of viscoelasticity 
at large strains remains to be worked out. 

1.3.2 Linear Viscoelasticity

1.3.2.1 The Integral Model

The Boltzmann superposition theory may be stated as follows:

	1. The creep in a specimen is a function of the entire loading history.
	2. �Each increment of load makes an independent and additive contribution to the total 

deformation.

(For creep, substitute stress-relaxation to cover all circumstances.) The first condi-
tion could be called the memory function: the response of the material is influenced 
by what has happened to it so far, so that it is “remembering” deformations long past 
and allowing them to influence its present behavior. The second condition states that 
if a specimen is loaded and is creeping under load, then the addition of an extra load 
will produce exactly the same additional creep as if that total load had been applied 
to the unloaded specimen and the specimen allowed to creep for the same amount of 
time. This is said to be a linear (i.e., directly additive) response. The second condition 
also implies that when the load is removed, the recovery in length of the specimen 
will follow the same time course as, and be identical with, the initial creep response. 
The importance of Boltzmann’s principle to the study of viscoelasticity is not so 
much that it provides any explanations as that it provides a starting point for math-
ematical models that can be tested against reality and refined to give a better fit. For 
instance, many papers have been written in which the effects of different sequences 
of stressing or straining have been calculated according to the Boltzmann principle 
and the results tested by a variety of experiments on real materials. The mathemati-
cal formulation of viscoelastic behavior derived from the Boltzmann principle is 
illustrated by figure 1.9.

The total strain at time t is given by

	 ( ) ( ) ( ) ( )t J t J t J t1 1 2 2 3 3f v x v x v xD D D= − + − + − ,	 [Eq. 1.10]

where J is the compliance of the material, and J (t − xn) is the creep compliance 
function and is the first explicit introduction of time into these equations as an extra 
variable. This equation can be generalized to give

	 ( ) ( ) ( )t J t dn n

t
f x v x= −

3−
# ,	 [Eq. 1.11]
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12	 •  1 BASIC ELASTICITY AND VISCOELASTICITY  •

which is usually rewritten—the immediate elastic response, f, is removed—allow-
ing mathematicians to rewrite the integral in what they find a more acceptable form:

	 ( ) ( )
( )

t
G

J t
d

d
d

u
n

n

n
n

t
f

v
x

x

v x
x= + −

3−
< F # ,	 [Eq. 1.12]

where G is the immediate or unrelaxed stiffness.
This operation divides the equation into a time-independent and a time-dependent 

(the integral) function. The stress-relaxation modulus can be calculated in the same 
manner to give

	 ( ) [ ] ( )
( )

t G t
d

d
dr r

r

r
t

rv f x
x

f x
x= + −

3−
# .	 [Eq. 1.13]

Notice in particular the pattern and symmetry of Eqs. 1.16 and 1.17. This implies that 
there is probably a formal relationship between the two expressions, but not only is 
this relationship rather too simple and generalized to be of much use when dealing 
with biological materials, it is more easily approached from a different starting point!

1.3.2.2 The Differential Model

Probably the best starting point, and certainly the one most easily appreciated by 
most biologists, is that of mechanical models using springs (elastic elements) and 
dashpots (viscous elements)—the differential approach. The springs are Hookean 
and the dashpots Newtonian. The Maxwell model (figure 1.10) has two elements:

	 Em1 1v f=  for the spring, and	 [Eq. 1.14a]

	 d dtm2 2v h f=  for the dashpot.	 [Eq. 1.14b]

Equation 1.14a can be divided on both sides by dt and rewritten as

	
dt
d

E dt
d1

m

1 1:
v f= ,

and Eq. 1.14b can be rewritten to give

	
dt
d

m

2 2

h

v f= ,

The two elements are in series, so that v1 = v2 = v. Also, the total strain on the model, 
f, is the sum of fl and f2. Thus Eqs. 1.14a and 1.14b can be added to give

Figure 1.9. Creep behavior of an ideal linear viscoelastic 
solid.
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dt
d

E dt
d

dt
d

dt
d1

m m

1 2:
v

h
v f f f+ = + = .	 [Eq. 1.15]

In a stress-relaxation experiment the length is held constant, so

	 0 0
dt
d

dt
d

E
1

and
m m

:
f v

h
v= + = .	 [Eq. 1.16]

Then, simple rearrangement gives

	 ( / )
d

E dtm mv
v

h= − .	 [Eq. 1.17] 

At the start of the stress-relaxation experiment, t = 0, and v = v0 is the initial stress. 
Integrating the last equation, we obtain

	 ( / )exp Em m0v v h= − .	 [Eq. 1.18] 

In other words, the stress decays exponentially (i.e., logarithmically) with a charac-
teristic time constant x = hm/ Em, so that

	 ( / )exp t0v v x= − .	 [Eq. 1.19] 

The Kelvin or Voigt model (Figure 1.10) models the creep test and, using arguments 
similar to those with the Maxwell model, gives rise to the expression

	 ( / )exp t0f f x= − .	 [Eq. 1.20] 

Note again the extreme symmetry between the two expressions for stress-relaxation 
and creep.

But why use two models? The Maxwell model is no use for modeling creep, since 
under constant load the dashpot will allow viscous flow, and the spring will be in 
constant tension. All that will then be observed is the Newtonian nature of the fluid in 
the dashpot. This does not accord with observation of real creep experiments, so the 
Maxwell model is inappropriate for their description. An even more serious objec-
tion arises against the use of the Voigt model for stress-relaxation experiments, since 
under such conditions the model behaves as an elastic solid. We can overcome these 
objections by combining the two models into a standard linear solid model (figure 
1.10). However, one can go on for ever with more and more complex combinations 

v

v vm m

mm

Figure 1.10. Simple spring and dashpot 
models.
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of units that do not produce any more unifying concepts. Further developments along 
these lines are ignored here.

The most profitable approach with spring-and-dashpot models, at least in the mod-
eling of artificial polymers, has been found to be that of combining numbers of Max-
well or Voigt elements (not mixing them) to obtain a spectrum of time characteristics. 
If the course of relaxation of a single Maxwell element is plotted, it is found to have 
the general shape shown in figure 1.11. If the slope of this curve is plotted against log 
(or ln) time, a curve of shape similar to a skew log-normal distribution is obtained 
(figure 1.12). The vertical axis of figure 1.12 is labeled −H(x), which is known as 
the relaxation spectrum function. The relaxation spectrum is the skew normal curve, 
and the relaxation time, x, of the Maxwell element that generated it is given by the 
mode of this curve. If more Maxwell elements, each with a different time constant, 
x, are arranged in parallel, it is not difficult to see that the decay of stress will be 
spread over a longer period as a result of a broader spread of relaxation times (figures 
1.11 and 1.12). The peculiar usefulness of this relaxation spectrum is that it can be 
derived from different types of experiments and so is a convenient transform for gen-
eral comparisons between materials and tests. The other usefulness of the relaxation 
spectrum (and, it should be added, the related retardation spectrum calculated in a 
similar manner from creep data) is that it gives some idea of the number and nature 
of the relaxation processes going on while the stresses are relaxing. This is because 
each process has its own characteristic relaxation time (section 1.5). In general, bio-
logical materials have a very broad relaxation/retardation spectrum, but the mesoglea 
of two sea anemones, Calliactis parasitica and Metridium senile, has a retardation 
spectrum dominated by a process having a retardation time of 103.4 s (figure 4.16). 
The model used was a single Voigt element working at strains much greater than 0.01 
(3, in fact), so at least in terms of strain, the model was probably inappropriate (Al-
exander 1962). Bill Biggs (unpublished) reworked Alexander’s data and found that 
they were better fitted by a five-element model with retardation times in the range 

G
τ

Figure 1.11. The time course of relaxation of a 
single Maxwell element and of several elements 
with a range of relaxation times.

Figure 1.12. Relaxation spectrum function, 
[−H(t)] derived from the curves in figure 1.11 
using the Alfrey approximation (Eq. 1.26).
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of 1 to 104 s. But on plotting −H(x) against ln t, Biggs found that the compliance is 
dominated by processes that have a retardation time of 103.5 s. Although even here, 
where definitely more than one process is involved, a single process is dominating 
the response. This is very unusual with biological materials; therefore, anemone me-
soglea could be a good model medium for investigating the mechanisms controlling 
the retardation spectra of biological materials.

The relaxation spectrum is clearly an important measure of viscoelastic behavior. 
Its mathematical derivation is as follows: for stress-relaxation at constant strain a 
single Maxwell element gives v(t) = Emf exp(−t/x). For a number of such elements 
joined in parallel, all at strain f, the stress is

	 ( ) ( / )expt E tn nv f x= −
n

/ ,	 [Eq. 1.21] 

where En and xn are the stiffness and relaxation time, respectively, of the nth element. 
Equation 1.21 can be rewritten as

	 ( ) [ ] ( ) ( / )expt G f t dr n
0

v f f x x x= + −
3# .	 [Eq. 1.22] 

The term Grf is the instantaneous stress. The integral represents the way in which the 
stress dies away with time, to give a(t). The function f(x) dx replaces En and defines 
the concentration of Maxwell elements with relaxation times between x and (x + dx). 
The relaxation modulus is then given by

	 ( ) ( ) ( / )expG t G f t d
0

r f x x x= + −
3# .	 [Eq. 1.23] 

The “relaxation time spectrum” f(x) is replaced by H(x) on a logarithmic time scale 
(simply because a log time scale is more convenient to handle). Then

	 ( ) ( ) ( / ) ( )exp lnG t G H t dr
0

x x x= + −
3# .	 [Eq. 1.24] 

In other words, the modulus at time t after the imposition of the strain is the sum of 
the initial modulus (initial stress divided by the [constant] strain) and of a function 
that describes how x varies with time after the start of the experiment. Because x is 
the ratio of the (Newtonian) viscosity to the stiffness of the individual elements, the 
integral can be considered as a function of modulus with time and describes the way 
in which the modulus changes (diminishes) with time. To calculate −H(x) simply, the 
Alfrey approximation is used. This assumes that exp(−t/x) = 0 up to time t = x, and 
exp(−t/x) = 1 when x is greater than t, and thus replaces a set of exponentials with a 
set of step functions. Equation 1.20 can then be rewritten as

	 ( ) [ ] ( ) ( )lnG t G H d
ln

r x x= +
3

x
# ,	 [Eq. 1.25] 

so that

	 ( )
( )

ln
H

d t
dG t

t

x = −
x=

< F ,	 [Eq. 1.26] 

which is the negative slope of a plot of relaxation modulus against ln (or log) t.
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1.3.2.3 The Molecular Model

The third major approach to understanding viscoelasticity is the molecular one. It is 
probably more convenient in this approach not to use stress-relaxation experiments 
or creep experiments but, rather, to use dynamic tests . This is not to say that transient 
experiments are of limited use. Far from it. Their versatility can be increased through 
variations in the temperature, and this variation will be referred to again once it has 
been dealt with in conjunction with dynamic tests. The strengths of stress-relaxation 
and creep tests are their ease of execution—measurement and experimental appa-
ratus are very easily managed—and their immediate applicability to the life of the 
animal or plant. But rather more can be accomplished with dynamic testing, since it 
is more versatile and covers a wider range of conditions. The theory is also applicable 
to a wide range of test rig geometries.

Once again the argument is for linear viscoelastic solids. (The usual subterfuge if 
you have a nonlinear solid [as are most biological materials] is to say that if you de-
form the material by a sufficiently small amount, then the material will give a linear 
response.) Dynamic testing is particularly suitable for tests under such limitations. 
The sample is subjected to strain varying sinusoidally with time at a frequency w. 
If the material being tested is Hookean, then the stress will be proportional to the 
strain—figure 1.13 shows stress and strain plotted against time; figure 1.14 (left) 
shows stress plotted against strain, which is a straight line. But if the material is 
viscous and has no elastic component, the stress in the material will be highest at the 
highest strain rate. Because the strain is varying sinusoidally about zero, the highest 
strain rate will be at zero strain. Stress in the material will be lowest at the lowest 
strain rate, which will be the point at which the strain is highest. The resulting stress–
strain Lissajous figure will be a circle. Looked at another way, the stress in a viscous 
material induced by sinusoidal strain is proportional to the changes of accelerations 

σ
ε

δ

Figure 1.14. Simple Lissajous diagrams 
showing (left) an elastic material (as 
figure 1.13) and (right) a viscoelastic 
material (as figure 1.15).

Figure 1.13. Sinusoidal strain and resulting 
stress induced in an elastic material.
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in strain and is therefore the first differential. Thus if y = sin x, then dy/dx = cos x. But 
cos x lags sin x by 90°, so the Lissajous figure is a circle.

A viscoelastic material has a response that is partly viscous and partly elastic, so 
its response to a sinusoidally varying strain (figure 1.15) will be a combination of the 
preceding two extremes (figure 1.14, right). The problem is how to extract the infor-
mation from the Lissajous figures. Essentially it is possible to measure a “modulus” 
at the highest strain and the highest strain rate—these moduli are the elastic (or real, 
or storage) modulus and the viscous (or imaginary, or loss) modulus. Because the 
modulus, G*, is the ratio of maximum stress to maximum strain, then

	 ( )sinG t0 0v f ~ d= +* .	 [Eq. 1.27] 

This expression can be expanded to give

( ) ( )cos sin sin cos sin cosG t G t G t G t0 0 0 0 0v f d ~ f d ~ f ~ f ~= + = +* * l ,	 [Eq. 1.28] 

where G′ is the elastic modulus, and G″ is the viscous modulus. There is thus a 
simple relationship between G*, G′, G″, and (d), which is summarized as a vector 
diagram (figure 1.16). The same argument can be used to extract a complex compli-
ance, J*, and to resolve it into its components.

The viscosity, h, can, as would be expected, be extracted from the preceding analy-
sis very simply:

	 /Gh ~=l m ;	 [Eq. 1.29a]

	 /Gh ~=m l .	 [Eq. 1.29b] 

Figure 1.15. Sinusoidal strain and resulting 
stress induced in a viscoelastic material.

δ Figure 1.16. Geometric resolution of the complex 
modulus, G*, into its component real (G′) and 
imaginary (G″) moduli, and d.
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The in-phase or real component of the viscosity, h′, is often called the dynamic 
viscosity.

Another form of dynamic experiment that has been very useful in the investigation 
of biological materials will be mentioned in passing. Using either a torsion pendulum 
or a beam of material mounted at one end only (Ward 2004) it is possible to subject 
the material to oscillations that decay freely with time. In such free decay the ampli-
tude of the oscillations decreases exponentially with time. Thus if in is the amplitude 
of the nth oscillation,

	
1

exp
n

n

i

i
D+ = ,	 [Eq. 1.30] 

where

	 / tanG Gr r dD = =m l 	 [Eq. 1.31] 

D is also known as the logarithmic decrement and is an extremely useful experimen-
tal handle for the simple determination of G′ and G″, especially at low frequencies 
up to about 10 Hz in a number of different test geometries.

1.3.3 Spectrum of Viscoelastic Behavior

It is now necessary to draw together the mathematical descriptions of viscoelastic-
ity to show how they are interrelated, how they can complement one another in the 
investigation of biomaterials, and how their results relate to the structure of the bio-
materials at the molecular level. The response of a polymer to dynamic oscillations 
is probably the easiest to understand from the molecular point of view. The most 
basic variable with dynamic experiments is time. In this case it’s the frequency of 
oscillation, which is inversely proportional to time after loading in a transient experi-
ment. The polymer molecules are in Brownian motion, just as described for rubber. 
The backbones are constantly changing their shape, rapidly at short range but with 
the entire length of the molecular writhing more slowly representing a long-range 
average of the short-range motions. Any side groups are wagging and twisting. To 
a first approximation the proportion of molecular displacements that are in phase 
with the externally applied oscillations represents energy storage; the proportion that 
are out of phase represents energy dissipated as heat. The material can exhibit the 
mechanical properties of a glass either if it is cooled (the amount of cooling required 
depends on the material and is typical of it) or if oscillations are applied at such a 
high frequency that essentially no backbone motions occur during the period of os-
cillation. The effect of either of these treatments is to restrict the amount by which 
the molecule can respond to the external forces by changing its shape, and so the 
forces are concentrated onto the backbone of the molecule. Under these conditions 
the molecule behaves much as a Hookean solid.

Rubbery behavior is typical of the plateau zone (figures 1.8 and 1.9). When the 
polymer molecules are excited at these intermediate frequencies, they become en-
tangled very easily, much as a ball of wool carelessly handled, and the entanglements 
act as labile cross-links, effectively transmitting the forces.
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Between these two zones—the glassy and rubbery plateaus—exists a viscoelastic 
transition zone. As the frequency of imposed oscillation increases from the rubbery 
state, the configurational changes in the network strands fail progressively to adjust 
themselves in the time allowed by the frequency of the oscillations. The long-range 
motions, being of lower frequency, are the first to run short of time in which to adjust, 
leaving increasingly shorter range motions to respond as the frequency rises. The 
strain in response to the applied stress gradually diminishes, and G′ increases from 
the rubbery modulus of 1 MPa to the glassy modulus that is nearly 10 GPa.

What is happening to the loss modulus during these changes? G″ is a measure 
of the energy lost through “viscous processes.” Relatively little energy is lost while 
the period of oscillation is not similar to the characteristic times that describe the 
rates of molecular processes involved in mechanical deformation. In the rubbery 
and glassy zones the oscillation period is different from these molecular resonances, 
so losses, and G″, are relatively small. But in the transition zone the period of oscil-
lation is similar to that of one or other of the molecular movements; the molecular 
movements lag the imposed oscillation, dissipating large amounts of energy and 
giving a high loss modulus, thus contributing a greater viscous component. Obvi-
ously, if there are several distinct molecular movements, then there will be distinct 
discontinuities or secondary transitions, and the curves of G′and G″ will be rather 
more sinuous.

At the other end of the frequency range—the terminal zone of the modulus curve—
entanglement slippage can occur within the period of oscillation, and the molecules 
can assume any and all possible shapes. There is thus little restraint on the material, 
and if it is not cross-linked, it will behave as a liquid of high viscosity. The terminal 
or flow zone will not appear if the material is cross-linked, and the modulus recorded 
will be the equilibrium modulus of a stress-relaxation experiment: the relaxation 
modulus, G(t), is approximately a mirror image of G′ reflected in the vertical axis. 
The appearance of the zones is also affected by the molecular weight: if the molecu-
lar weight is low (below 10 kDa), the plateau zone is absent, and the transition and 
terminal zones blend directly. Highly crystalline or glassy polymers will have a rela-
tively high modulus over the entire frequency range, although there are still changes 
in the modulus that can give much information.

You will remember from the models of transient experiments that the relaxation 
and retardation times fall in the zone between the rubbery and the glassy states (fig-
ures 1.11 and 1.12; Eqs. 1.24–1.29). The characteristic relaxation processes are the 
same as those occurring in the transition zone of dynamic experiments. In other 
words, the relaxation times can be associated with the various modes of motion of 
the molecules. It is this basic association of molecular and mechanical properties 
that makes t such an important and general constant and that makes the relaxation 
spectrum, H(x), such a useful form of comparison between tests, whether they be 
transient or dynamic. Using the Alfrey approximation to derive H(x) from G(x), we 
can derive H(x) from G′ or G″ by the following relationship:

	 ( )
ln

H
d
dG

G
2

/
/

1
1x

~ r
= =

~ x

~ x

=
=

l
md n .	 [Eq. 1.32]

© Copyright, Princeton University Press. 
No part of this book may be distributed, posted, or reproduced in any form by 
digital or mechanical means without prior written permission of the publisher 



20	 •  1 BASIC ELASTICITY AND VISCOELASTICITY  •

These transitions can be detected by another parameter, tan d. Because G″ in-
creases relative to G′ in the transition regions, tan d will also increase in these re-
gions. However, since G′ and G″ both increase with frequency, it is not very easy to 
compare them visually. The ratio between the two gives a much more sensitive com-
parison, amplifying the differences and making them very obvious. Tan d is therefore 
a much-used indicator of the presence, position, and relative magnitude of transi-
tions. As would be expected, x and tan d are closely related. For the Maxwell model, 
tan d = 1/~x′; for the Voigt model, tan d = ~x. These relationships are, however, too 
simplified and formal to be of practical use in most instances.

So far, temperature has not been mentioned except in reference to the glassy state. 
A polymer tends to the glassy state either as the temperature is reduced or as the 
experimental time gets shorter. Thus the high-frequency parts of the dynamic experi-
ments and the first parts of transient experiments (the first fraction of a second—as-
suming that the loading is instantaneous) produce results equivalent to lowering the 
temperature in experiments with a longer time constant. Conversely, higher tem-
perature is equivalent to longer times in transient and dynamic experiments, bring-
ing the polymer into a region of lower modulus. For this reason, applying heat to a 
glassy polymer (e.g., Perspex) softens or melts it, and the plastics-molding industry 
is made possible. This equivalence of time and temperature has been enshrined in 
the WLF (Williams, Landel, Ferry, the authors of the paper in which it was derived) 
equation of time–temperature equivalence or superposition. Its mathematics is be-
yond the present scope. This relationship allows experiments performed at different 
temperatures with different time constants to be related to a continuous spectrum of 
response, which has several implications. The first is that although the different types 
of transient and dynamic tests are limited in the time ranges over which they are 
most effective, these ranges can be extended by judiciously varying the temperature. 
Although the practical range of temperature for biological materials is little more 
than from 0°C to 40°C, even this amount can extend the time range by four to five 
orders of magnitude. Thus, although the experimentally convenient time scale for 
a transient test is about 100 to 103 s, use of the time–temperature interchangeability 
allows the range to be extended, from l0−2 to 105 or so, allowing the analysis of a 
system with values of t between 100 and 103 s. Thus the power of the transient experi-
ment in practice becomes greater, which is a Good Thing, because transient tests on 
the whole require less capital outlay in equipment. However, a note of caution should 
be sounded. Time–-temperature superposition theory has proved its usefulness with 
artificial polymers but has not yet been adequately tested with the much more com-
plex biological materials. In addition, time–temperature superposition is valid only 
when no new relaxation processes are made possible by the change in temperature. It 
is possible, for instance, that a particular relaxation process could occur only above a 
particular temperature as a result of chemical change due to temperature.

In addition, most biological materials are hydrated. The interactions of these ma-
terials with water will change with temperature, so the WLF equation cannot be 
used directly. The time–temperature relationship highlights another problem that has 
scarcely been touched on. If a change in temperature, such as might be expected 
in nature, can change the reaction of a material to mechanical stimuli to the extent 
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suggested previously, then one might expect mechanical tissues to be adapted to the 
temperature at which they function. This might be true for collagen, and it is certainly 
true for elastin.

Water has other effects. It is a plasticizer that swells and softens biological materi-
als. This softening can be attributed to the increase of free space within the material, 
which allows the polymer molecules greater kinetic freedom. Another way of saying 
that a material has been softened is to say that G′ and G″ have been shifted to higher 
frequencies or lower temperatures and that the brittle dry materials that become soft 
and pliable on wetting are brought out of the glassy phase as the glass transition 
temperature is lowered by the addition of water, which acts as a diluent. The water in 
proteins has a much greater effect than merely altering the glass transition tempera-
ture: being a polar substance, water also greatly influences the conformation of pro-
teins. Hydrophobic amino acids will tend to clump into zones that exclude the water, 
making the protein globular. Such hydrophobic interactions are largely beyond the 
scope of this book but are very important in controlling conformation and molecular 
mobility. In general, the role of water in the mechanics of biological materials has not 
received very much attention and could do with much more investigation.

1.4 Yield and Fracture

One of the principal characteristics of biological materials and structures is their 
toughness and resistance to rupture. Skin and wood are as tough as the best man-
made materials, although only for wood do we have any idea why this should be so. 
Toughness is an important requirement for most biological materials—if bladders 
went pop with the regularity that boilers do, we should all be in deep trouble. There 
are two main ways in which a material can react when it is extended beyond its safe 
elastic limit. It can break immediately, or it can undergo plastic deformation, which 
is known as plasticity (in metals, ductility). Just as the mechanical properties of a 
viscoelastic material vary with temperature and strain rate, so do yield and fracture 
(figure 1.17). Brittle failure is characterized by low strain and rupture that occurs at 
the highest stress reached. Common brittle materials are biscuit, dessert jello, high-
carbon steel, and the membrane around a hen’s egg just beneath the shell. Brittle 
materials are not common in nature. Also shown in figure 1.17 is ductile failure 

Figure 1.17. Range of yield and fracture 
behavior of a polymer at different 
temperatures. As the temperature 
increases, the initial modulus drops and 
the material stretches farther.
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with yield just before failure. The yield involves plastic deformation. In the curve 
illustrating necking and cold drawing, the material has yielded, after which the cross 
section is reduced quite abruptly. The material continues to extend, with the polymer 
molecules reorientating themselves in the necked region at more or less constant 
force (although the stress is really increasing, because the section area of the sample 
is decreasing). With a polymer, this process of “cold drawing” produces a mate-
rial, with its molecules now in a preferred orientation, that is much stiffer than the 
amorphous material from which it was derived and which is therefore called strain 
hardened. The strain hardening contributes to the stress–strain curve at a point later 
on in the curve where all the material has been cold drawn, causing a final upturn 
before brittle failure. A curve of this shape is also produced by hair, and the explana-
tion is somewhat similar. Rubbery behavior is illustrated for comparison. Yield and 
plastic deformation are thus associated with molecular transitions; indeed, necking 
is itself a transition.

Most biological materials have resistance to necking and yield built into their 
mechanics. This property can be demonstrated as follows: the true stress (section 
1.2) in a strained specimen is higher than the engineering stress based on the cross-
sectional area of the unstrained specimen. The true stress–strain curve can give the 
ultimate tensile stress using the Considère construction (figure 1.18). The tangent to 
the stress–strain curve drawn from −1 on the strain axis gives the maximum stiff-
ness of the material. Beyond the point at which the tangent touches the curve, the 
true stress is dropping and the material is failing. Figure 1.18 shows this process for 
a material with a convex stress–strain curve. Nearly all biological materials have a 
concave stress–strain curve to which such a tangent cannot be drawn. Thus there is 
no possibility of yield within the working strains of the material, which would not 
be so were the stress–strain curve more like that of rubber (figure 1.19). This means 
that even if the materials are working near or in their transition zone the energy fed 
into the material as it is extended will be spread evenly throughout, and there will be 
little possibility of local increases in stress that, as shall be explained, can lead to the 
failure of the material at low overall loads.

The fracture behavior of both polymers and the more complex biomaterials is rel-
atively unknown and unexplored, especially since it usually occurs at high strains, 
which are mathematically difficult to characterize.The fracture of brittle materials, 
the foundations of which were laid by the theory of Griffith (1921), is much better 

Figure 1.18. The Considère construction as a 
criterion of liability to yield.
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understood. Although the theory is not difficult, it is minimally applicable to polymers 
in the viscoelastic and rubbery regions of their behavior and is of limited use with 
complex composites such as bone or wood. Essentially, Griffith said that a fracture 
results in the formation of two new surfaces on each side of the crack and that the 
formation of these surfaces requires energy. This energy is stored as changes in bond 
length throughout the rest of the material as it is stretched. The process of fracture 
then involves the transmission of this energy to the fracture surfaces, at the same time 
relaxing the strain in the area from which energy has been released. If the crack is 
considered to be linear, traveling at right angles to the direction of the applied stress 
(figure 1.20), then it is reasonable to suppose that the energy that the crack is absorb-
ing comes from an area defined by the crack as the diameter of a circle. It is fairly 
obvious that as the crack (length L) extends (by an amount ∆l ), the amount of energy 
available for the propagation of the crack will increase at a greater rate, since it is 
proportional to the square of the crack length. Up to a certain crack length the energy 
released from this area is not enough to propagate the crack, but after this point (the 
critical or Griffith length) more energy is released than is required, so the crack is 
propagated (figure 1.21). This mechanism, plus the capacity to transmit the stresses 
to the crack tip where fracture is occurring, accounts for the fracture of brittle (non-
ductile) materials. But ductility or plasticity (i.e., irrecoverable deformation) can use 

Figure 1.19. Comparison of the stress–strain curves of 
rubber and a typical fibrous soft biological material.

Figure 1.20. Model for deriving the general 
conditions for the propagation of a crack.
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up energy before it can reach the crack tip to contribute to the new fracture surface. In 
metals, ductility can account for far more energy than is needed for propagation of the 
crack, and this has also been shown to be true for brittle fracture in polymers. In more 
compliant polymers and complex materials such as skin, this behavior is expressed in 
motions such as the alignment of the polymer molecules ahead of the crack tip.

The realization that two criteria have to be fulfilled for a piece of material to break 
arose largely from Griffith’s work. The strength of the material (the critical stress in-
tensity, KC) must be reached, and there must be sufficient elastic strain energy (work 
of fracture) available at the tip of the crack to propagate it. In engineering, the critical 
stress intensity is known as the toughness: engineers are, on the whole, more inter-
ested in how to resist the initiation of a crack, whereas biological materials some-
times seem to encourage the formation of a crack and then control its propagation 
through work-of-fracture mechanisms.

In most of the attempts to produce a theory of fracture, one of the aims has been 
to produce a material parameter that does not depend on the shape of the specimen 
or the orientation of the crack. This is a reasonable aim that has substantially been 
achieved for linear materials, in which all the strain energy is involved in fracture 
and in which fracture occurs at relatively small strains. But one of the properties 
of polymers at large strains that has already been mentioned is the tendency for the 
molecules to become oriented in response to the deforming forces. This orienta-
tion can, in some materials, lead to strain crystallization somewhat akin to the strain 
hardening of a cold-drawn polymer. Such crystallization can be reversible and so be 
a function of strain. Thus for such materials the problem arises that its morphology 
changes with strain. And just as the properties of the strain-hardened polymer are dif-
ferent from those of the random polymer, so, too, the properties of any polymer may 
be considered to change with extension. In fact, a cross-linked polymer in a state of 
large static strain, at equilibrium, may be considered as a new anisotropic material 
whose linear viscoelastic properties can be studied. It should therefore be no surprise 
that there is (probably) no unique work of fracture for high-strain polymers.

The other complication is that energy can be dissipated at sites remote from the 
fracture surface. (Oliver Wendell Holmes’s “The Deacon’s Masterpiece; or, ‘The Won
derful One-Hoss Shay,’ a Logical Story” (Holmes 1907) demonstrates this property 

c
Figure 1.21. The energy conditions associated 
with the propagation of cracks showing the 
derivation of the critical crack length, lc. The 
term “+ve” indicates strain energy released by  
the crack; “−ve” indicates energy used to make 
new surfaces as the crack progresses.
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to perfection. All the knocks of everyday life were accumulated within the perfectly 
balanced and adjusted structure and kept away from any fracture surface until, ex-
actly a hundred years after it was made, the shay collapsed into a heap of dust be-
cause it could absorb no more strain energy. A few early fiberglass car bodies were 
rather like this.)

Some indication of this dissipation can be obtained from hysteresis tests, where 
the hysteresis results from energy lost within the bulk of the material. Should one 
take account of this loss when calculating the fracture constants? For filled rubbers, 
in which the amount of filler (carbon black) is varied, it is found that not only is this 
loss directly correlated with the degree of hysteresis but that higher hysteretic losses 
are associated with greater toughness. And in the compressive failure of wood across 
the grain, the size and distribution of large vessels control the distribution of weak-
ness and orchestrate the uniform failure of the material (Hepworth et al. 2002); a 
similar mechanism seems to be invoked in bone by microcracks (Reilly and Currey 
2000). Work with self-healing materials (Trask, Williams, and Bond 2007) shows 
that a limited amount of damage actually makes material tougher. Additionally, it 
may well be that mechanisms for energy dissipation also vary with strain and strain 
rate. A further factor is the transmission of strain energy to the crack tip, where it is 
needed to supply the energy for crack propagation. The effectiveness of the transmis-
sion of stresses to the developing crack tip is a function of shear modulus, which 
itself changes with shear rate. Thus the speed at which the crack is fed with energy 
will depend on the rate of change of shape in the material around the crack.

Toughness can be increased by a number of mechanisms, all of which increase 
the amount of energy required for fracture and all of which can be present in a tough 
material. The following are some of them:

	1. �The strain energy is unable to reach the crack tip. For instance, it can be dissipated 
by plastic yield and failure of the material remote from the crack. It is quite possible 
that viscous effects within the material will slow down the rate of delivery of energy 
to the crack tip, so that the crack can be propagated only slowly and with difficulty. 
Transfer of fluid from one site to another within the material falls into this category 
and seems to be a mechanism for toughening teeth (Fox 1980) and, very probably, 
other biomaterials. The strain energy may not be transmitted at all if the shear stiff-
ness of the matrix material is too low (evidenced by a J-shaped stress–strain curve, 
common in soft tissues) (Mai and Atkins 1989).

	2. �The total energy required for cracking is raised. For example, the fracture surface is 
very convoluted and therefore of large area, or the material at the crack tip deforms 
plastically.

	3. �The stress at the crack tip is defocused by, for example, increasing its radius of cur-
vature or by the Cook-Gordon effect (see figure 5.29). The sharpness of the crack 
tip governs the stress intensity. It focuses the strain energy onto the next susceptible 
bond. At high strains in unidirectional extension, the crack tip rounds off into a semi-
circle. In rubbers (and probably in other high-strain materials) there is evidence of 
strain crystallization at the crack tip (now a semicircle) that further strengthens this 
most vulnerable area.
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	4. �As the crack opens, fibers or filaments extend across it, dissipating energy by their 
own deformation (Fantner et al. 2005) or by friction as they pull out from the bulk of 
the material (Pisanova et al. 2001).

	5. �The material is prestressed in the sense opposite that in which it is most likely to be 
loaded (e.g., in compression if the most likely loads will be tensile), so that a crack 
cannot start until this prestress is paid off.

	6. �The entire structure is so small that the strain energy necessary for fracture cannot be 
stored.

In practical terms, fracture toughness can be measured and calculated in a large num-
ber of different ways. For each test geometry there is a specific mathematical solution 
that makes a number of assumptions about the material and the test and allows cal-
culation of toughness from a number of more or less simple measurements. General 
information is available from the work of Atkins (Atkins and Mai 1985). However, 
biological materials frequently transgress these assumptions, being anisotropic or 
very stretchy or inhomogeneous or oddly shaped. There is a pragmatic way of coping 
with these problems: use a test in which the crack grows in a stable fashion such that 
the test piece can be unloaded (i.e., returned to its original length or shape, or until the 
recording device shows that no load is still being applied) before it breaks into two 
pieces. An example is the double cantilever beam (figure 1.22). If a sample of this 
shape is displaced as indicated, it will, when it reaches breaking load, start to fracture 
(figure 1.23). If the fracture is allowed to propagate with increasing displacement, 
and the test piece is unloaded before the specimen breaks in two, the force–extension 
curve will follow the path MNO. Notice that this is not a stress–strain curve: the lines 
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Figure 1.23. Load deflection curve for the estimation of 
fracture toughness using the Gurney work-area approach.

Figure 1.22. Notched double cantilever beam used 
for the generation of the data in figure 1.23.
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MO and NO differ in slope because the cross section of the test piece has been re-
duced by the cracking. Notice also that because the test piece has been unloaded and 
returned to zero load, the area within the triangle OMN represents the work done, or 
energy absorbed, in fracturing the specimen. In a viscoelastic or elasto-plastic mate-
rial there are additional losses due to hysteresis or permanent deformation on loading 
and unloading (figure 1.24). Corrections for extrinsic factors such as the stiffness of 
the test machine can be made graphically (Jackson, Vincent, and Turner 1988).

This type of test can be performed with morphologies other than the double can-
tilever beam: so long as the crack propagates in a stable fashion and can be arrested 
at the will of the experimenter, it will give results that can be analyzed in this fash-
ion. Atkins and Mai (1985) give the criteria for controlled cracking in a number of 
morphologies. Alternatively, if the test is performed at a sufficiently slow rate of 
extension such that the force falls to zero just as the crack finishes traveling across 
the specimen and it breaks completely, then there can be no strain energy left in the 
material, and the area under the curve represents only the energy used for fracture. 
This is a rather risky trick and implies that you can talk to your sample in its own lan-
guage! Either way, any elastic strain energy is discounted from the final reckoning, 
and the energy that the force–deformation curve encloses is that required to propa-
gate the crack. The great advantage of this graphical technique is that it is entirely 
independent of any mathematical model and the assumptions involved in generating 
such a model. As such, it is particularly useful for biological materials, which are so 
complex that there frequently isn’t a respectable mathematical theory to describe or 
analyze their fracture processes. This general approach is known eponymously as the 
Gurney work-area method (Gurney and Ngan 1971). (I was once giving a lecture on 
the fracture mechanics of food, a class of material that comes in so many difficult 
shapes and sizes [mostly small] that this method is one of the few that works, since 
it has no prerequisites. At the end of the lecture an elderly gentleman who had been 
sitting in the front row of the lecture theater came up to me and said, “I’m so pleased 
you like my ideas”!)

There is another problem. Any piece of tissue will have a number of imperfections 
(scratches, nicks, notches, and cuts) whose size, nature, and distribution are difficult 
to control or predict. Depending on the nature of the material, these imperfections 

A B

Figure 1.24. Process for deriving  
work-area curves from experimental 
data. The slopes and point at which 
fracture starts (the force drops) are 
extracted and plotted (A), and a 
machine stiffness correction is applied 
(dotted lines). The plastic component 
of fracture is taken out by moving all 
the lines to the origin of the graph (B), 
and the elastic fracture energy is given 
by the new enclosed areas (Jackson, 
Vincent, and Turner 1988).
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can affect, or even direct, the mechanisms of failure; for instance, they can initiate a 
crack. This is because any imperfection has the effect of concentrating stress around 
it, more especially at sharp corners (Gordon 1976). Smooth corners and edges are 
important in controlling fracture. One strategy is to confine the deformation to a 
very small area, effectively limiting failure to a small zone, as is achieved in the 
“trouser-tear” test and by techniques involving cutting or wedging. Another strategy 
is to introduce an imperfection larger than any of those already in the test piece. This 
is commonly done by notching or cutting the specimen. This option is not available 
with brittle materials, in which the starter crack need be only a few micrometers long 
and thus more or less uncontrollable. In that case a statistical approach is necessary, 
such as that of Weibull (1951). This approach assumes that the strength of the mate-
rial is distributed more or less normally about a mean value and provides the mean 
and the deviation (the Weibull modulus). This has proved useful in the analysis of the 
fracture properties of potato crisps/chips (Rojo and Vincent 2008, 2009).

The problems involved in fracture of biological materials when they are stretched 
in two directions at right angles to each other (biaxial straining—the preceding dis-
cussion has been concerned with uniaxial straining only) have not been investigated 
much, even though they are of greater relevance to organisms. It seems likely that 
fracture of a biaxially strained specimen will be more “brittle” than fracture of a uni-
axially strained specimen. Compare the way in which a balloon pops when pricked 
with a pin with the way a piece of rubber from the same balloon reacts to the same 
stimulus when stretched by the same amount but uniaxially. The “toughness” of rub-
ber is dependent on the way in which that toughness is measured. Thus it is quite pos-
sible that the toughness of skin will vary with its position on the body in accordance 
with the direction and magnitude of likely strains.

1.5 Adhesion

Adhesion will be mentioned only briefly in that the proper tools for its measurement 
have been discussed in general terms already. There are a number of different mecha-
nisms of adhesion (Kinlock 1987), which can be summarized as mechanical inter-
locking (micrometer-sized roughness); diffusion of one component into the other 
(which has been observed when two artificial rubbers are pressed together); electron 
transfer (an arcane and mostly insignificant theory and effect); and adsorption (by 
van der Waals forces and hydrogen or chemical bonds). In general, the strength of 
an adhesive bond is probably best thought of as a problem in fracture, so it can be 
measured with the caveats of fracture mechanics in mind. As an example, the adhe-
sion of the gecko’s foot relies on its being peeled off the substrate rather like a piece 
of sticky tape pulled up from one end. Gordon (1976) gives a good discussion of 
adhesive joints—both their formation and strength or toughness—in his treatment of 
how wooden aircraft were built and maintained.
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