
1
Facts, Factors, and Questions

In this chapter we introduce some important concep-
tual, descriptive, and theoretical considerations regard-
ing nominal government bond yield curves. Conceptu-
ally, just what is it that are we trying to measure?
How can we best understand many bond yields at many
maturities over many years? Descriptively, how do yield
curves tend to behave? Can we obtain simple yet accu-
rate dynamic characterizations and forecasts? Theoreti-
cally, what governs and restricts yield curve shape and
evolution? Can we relate yield curves to macroeconomic
fundamentals and central bank behavior?

These multifaceted questions are difficult yet very
important. Accordingly, a huge and similarly multi-
faceted literature attempts to address them. Numerous
currents and cross-currents, statistical and economic,
flow through the literature. There is no simple linear
thought progression, self-contained with each step fol-
lowing logically from that before. Instead the literature
is more of a tangled web; hence our intention is not to
produce a “balanced” survey of yield curve modeling, as
it is not clear whether that would be helpful or even what
it would mean. On the contrary, in this book we slice
through the literature in a calculated way, assembling
and elaborating on a very particular approach to yield
curve modeling. Our approach is simple yet rigorous,
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2 1. Facts, Factors, and Questions

simultaneously in close touch with modern statistical and
financial economic thinking, and effective in a variety of
situations. But we are getting ahead of ourselves. First
we must lay the groundwork.

1.1 Three Interest Rate Curves

Here we fix ideas, establish notation, and elaborate on
key concepts by recalling three key theoretical bond mar-
ket constructs and the relationships among them: the
discount curve, the forward rate curve, and the yield
curve. Let P (τ) denote the price of a τ -period discount
bond, that is, the present value of $1 receivable τ peri-
ods ahead. If y(τ) is its continuously compounded yield
to maturity, then by definition

P (τ) = e−τy(τ). (1.1)

Hence the discount curve and yield curve are imme-
diately and fundamentally related. Knowledge of the
discount function lets one calculate the yield curve.

The discount curve and the forward rate curve are sim-
ilarly fundamentally related. In particular, the forward
rate curve is defined as

f(τ) =
−P ′(τ)
P (τ)

. (1.2)

Thus, just as knowledge of the discount function lets
one calculate the yield curve, so too does knowledge of
the discount function let one calculate the forward rate
curve.

Equations (1.1) and (1.2) then imply a relationship
between the yield curve and forward rate curve,

y(τ) =
1
τ

∫ τ

0
f(u)du. (1.3)
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1.2. Zero-Coupon Yields 3

In particular, the zero-coupon yield is an equally weight-
ed average of forward rates.

The upshot for our purposes is that, because know-
ledge of any one of P (τ), y(τ), and f(τ) implies know-
ledge of the other two, the three are effectively inter-
changeable. Hence with no loss of generality one can
choose to work with P (τ), y(τ), or f(τ). In this book,
following much of both academic and industry practice,
we work with the yield curve, y(τ). But again, the choice
is inconsequential in theory.

Complications arise in practice, however, because al-
though we observe prices of traded bonds with various
amounts of time to maturity, we do not directly observe
yields, let alone the zero-coupon yields at fixed stan-
dardized maturities (e.g., six-month, ten-year, . . . ), with
which we work throughout. Hence we now provide some
background on yield construction.

1.2 Zero-Coupon Yields

In practice, yield curves are not observed. Instead, they
must be estimated from observed bond prices. Two his-
torically popular approaches to constructing yields pro-
ceed by fitting a smooth discount curve and then con-
verting to yields at the relevant maturities using formulas
(1.2) and (1.3).

The first discount curve approach to yield curve con-
struction is due to McCulloch (1971, 1975), who models
the discount curve using polynomial splines.1 The fit-
ted discount curve, however, diverges at long maturities
due to the polynomial structure, and the correspond-
ing yield curve inherits that unfortunate property. Hence

1See also McCulloch and Kwon (1993).
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4 1. Facts, Factors, and Questions

such curves can provide poor fits to yields that flatten
out with maturity, as emphasized by Shea (1984).

An improved discount curve approach to yield curve
construction is due to Vasicek and Fong (1982), who
model the discount curve using exponential splines.
Their clever use of a negative transformation of matu-
rity, rather than maturity itself, ensures that forward
rates and zero-coupon yields converge to a fixed limit
as maturity increases. Hence the Vasicek-Fong approach
may be more successful at fitting yield curves with flat
long ends.

Notwithstanding the progress of Vasicek and Fong
(1982), discount curve approaches remain potentially
problematic, as the implied forward rates are not neces-
sarily positive. An alternative and popular approach to
yield construction is due to Fama and Bliss (1987), who
construct yields not from an estimated discount curve,
but rather from estimated forward rates at the observed
maturities. Their method sequentially constructs the
forward rates necessary to price successively longer-
maturity bonds. Those forward rates are often called
“unsmoothed Fama-Bliss” forward rates, and they are
transformed to unsmoothed Fama-Bliss yields by appro-
priate averaging, using formula (1.3). The unsmoothed
Fama-Bliss yields exactly price the included bonds.
Unsmoothed Fama-Bliss yields are often the “raw” yields
to which researchers fit empirical yield curves, such as
members of the Nelson-Siegel family, about which we
have much to say throughout this book. Such fitting
effectively smooths the unsmoothed Fama-Bliss yields.

1.3 Yield Curve Facts

At any time, dozens of different yields may be observed,
corresponding to different bond maturities. But yield
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1.3. Yield Curve Facts 5

curves evolve dynamically; hence they have not only a
cross-sectional, but also a temporal, dimension.2 In this
section we address the obvious descriptive question: How
do yields tend to behave across different maturities and
over time?

The situation at hand is in a sense very simple—
modeling and forecasting a time series—but in another
sense rather more complex and interesting, as the series
to be modeled is in fact a series of curves.3 In Figure 1.1
we show the resulting three-dimensional surface for the
United States, with yields shown as a function of matu-
rity, over time. The figure reveals a key yield curve fact:
yield curves move a lot, shifting among different shapes:
increasing at increasing or decreasing rates, decreasing
at increasing or decreasing rates, flat, U-shaped, and
so on.

Table 1.1 presents descriptive statistics for yields at
various maturities. Several well-known and important
yield curve facts emerge. First, time-averaged yields (the
“average yield curve”) increase with maturity; that is,
term premia appear to exist, perhaps due to risk aver-
sion, liquidity preferences, or preferred habitats. Sec-
ond, yield volatilities decrease with maturity, presum-
ably because long rates involve averages of expected
future short rates. Third, yields are highly persistent, as
evidenced not only by the very large 1-month autocorre-
lations but also by the sizable 12-month autocorrelations.

2We will be interested in dynamic modeling and forecasting of
yield curves, so the temporal dimension is as important as the
variation across bond maturity.

3The statistical literature on functional regression deals with
sets of curves and is therefore somewhat related to our concerns.
See, for example, Ramsay and Silverman (2005) and Ramsay et al.
(2009). But the functional regression literature typically does not
address dynamics, let alone the many special nuances of yield curve
modeling. Hence we are led to rather different approaches.
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Figure 1.1. Bond Yields in Three Dimensions. We plot
end-of-month U.S. Treasury bill and bond yields at maturi-
ties ranging from 6 months to 10 years. Data are from the
Board of Governors of the Federal Reserve System, based on
Gürkaynak et al. (2007). The sample period is January 1985
through December 2008.

Table 1.2 shows the same descriptive statistics for
yield spreads relative to the 10-year bond. Yield spread
dynamics contrast rather sharply with those of yield lev-
els; in particular, spreads are noticeably less volatile and
less persistent. As with yields, the 1-month spread auto-
correlations are very large, but they decay more quickly,
so that the 12-month spread autocorrelations are notice-
ably smaller than those for yields. Indeed many strate-
gies for active bond trading (sometimes successful and
sometimes not!) are based on spread reversion.
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1.4. Yield Curve Factors 7

Table 1.1. Bond Yield Statistics

Maturity
(months) ȳ σ̂y ρ̂y(1) ρ̂y(12)

6 4.9 2.1 0.98 0.64
12 5.1 2.1 0.98 0.65
24 5.3 2.1 0.97 0.65
36 5.6 2.0 0.97 0.65
60 5.9 1.9 0.97 0.66

120 6.5 1.8 0.97 0.68

Notes: We present descriptive statistics for end-of-month
yields at various maturities. We show sample mean, sample
standard deviation, and first- and twelfth-order sample auto-
correlations. Data are from the Board of Governors of the
Federal Reserve System. The sample period is January 1985
through December 2008.

1.4 Yield Curve Factors

Multivariate models are required for sets of bond yields.
An obvious model is a vector autoregression or some
close relative. But unrestricted vector autoregressions
are profligate parameterizations, wasteful of degrees of
freedom. Fortunately, it turns out that financial asset
returns typically conform to a certain type of restricted
vector autoregression, displaying factor structure. Fac-
tor structure is said to be operative in situations where
one sees a high-dimensional object (e.g., a large set of
bond yields), but where that high-dimensional object is
driven by an underlying lower-dimensional set of objects,
or “factors.” Thus beneath a high-dimensional seem-
ingly complicated set of observations lies a much simpler
reality.

Indeed factor structure is ubiquitous in financial mar-
kets, financial economic theory, macroeconomic funda-
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Table 1.2. Yield Spread Statistics

Maturity
(months) s̄ σ̂s ρ̂s(1) ρ̂s(12)

6 −1.6 1.3 0.98 0.44
12 −1.4 1.1 0.98 0.46
24 −1.1 0.9 0.97 0.48
36 −0.9 0.7 0.97 0.47
60 −0.6 0.4 0.96 0.44

120 NA NA NA NA

Notes: We present descriptive statistics for end-of-month yield
spreads (relative to the 10-year bond) at various maturities.
We show sample mean, sample standard deviation, and first-
and twelfth-order sample autocorrelations. Data are from the
Board of Governors of the Federal Reserve System, based on
Gürkaynak et al. (2007). The sample period is January 1985
through December 2008.

mentals, and macroeconomic theory. Campbell et al.
(1997), for example, discuss aspects of empirical fac-
tor structure in financial markets and theoretical fac-
tor structure in financial economic models.4 Similarly,
Aruoba and Diebold (2010) discuss empirical factor
structure in macroeconomic fundamentals, and Diebold
and Rudebusch (1996) discuss theoretical factor struc-
ture in macroeconomic models.

In particular, factor structure provides a fine descrip-
tion of the term structure of bond yields.5 Most early
studies involving mostly long rates implicitly adopt a
single-factor world view (e.g., Macaulay (1938)), where
the factor is the level (e.g., a long rate). Similarly, early

4 Interestingly, asset pricing in the factor framework is closely
related to asset pricing in the pricing kernel framework, as discussed
in Chapter 11 of Singleton (2006).

5For now we do not distinguish between government and
corporate bond yields. We will consider credit risk spreads later.
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1.4. Yield Curve Factors 9

Figure 1.2. Bond Yields in Two Dimensions. We plot
end-of-month U.S. Treasury bill and bond yields at maturi-
ties of 6, 12, 24, 36, 60, and 120 months. Data are from the
Board of Governors of the Federal Reserve System, based on
Gürkaynak et al. (2007). The sample period is January 1985
through December 2008.

arbitrage-free models like Vasicek (1977) involve only a
single factor. But single-factor structure severely lim-
its the scope for interesting term structure dynamics,
which rings hollow in terms of both introspection and
observation.

In Figure 1.2 we show a time-series plot of a standard
set of bond yields. Clearly they do tend to move notice-
ably together, but at the same time, it’s clear that more
than just a common level factor is operative. In the real
world, term structure data—and, correspondingly, mod-
ern empirical term structure models—involve multiple
factors. This classic recognition traces to Litterman and
Scheinkman (1991), Willner (1996), and Bliss (1997),
and it is echoed repeatedly in the literature. Joslin et al.
(2010), for example, note:
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10 1. Facts, Factors, and Questions

 

Figure 1.3. Bond Yield Principal Components. We show
the first, second, and third principal components of bond
yields in dark, medium, and light shading, respectively.

The cross-correlations of bond yields are well de-
cribed by a low-dimensional factor model in the
sense that the first three principal components of
bond yields . . . explain well over 95 percent of their
variation. . . . Very similar three-factor represen-
tations emerge from arbitrage-free, dynamic term
structure models . . . for a wide range of maturities.

Typically three factors, or principal components, are all
that one needs to explain most yield variation. In our
data set the first three principal components explain
almost 100 percent of the variation in bond yields;
we show them in Figure 1.3 and provide descriptive
statistics in Table 1.3.

The first factor is borderline nonstationary. It drifts
downward over much of the sample period, as inflation
was reduced relative to its high level in the early 1980s.
The first factor is the most variable but also the most
predictable, due to its very high persistence. The sec-
ond factor is also highly persistent and displays a clear
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Table 1.3. Yield Principal Components Statistics

PC σ̂ ρ̂(1) ρ̂(12) R2

First 2.35 0.97 0.67 0.98
Second 0.52 0.97 0.45 0.95
Third 0.10 0.83 0.15 0.70

Notes: We present descriptive statistics for the first three prin-
cipal components of end-of-month U.S. government bill and
bond yields at maturities of 6, 12, 24, 36, 60, and 120 months.
We show principal component sample standard deviation,
first- and twelfth-order principal component sample auto-
correlations, and the predictive R2 (see Diebold and Kilian
(2001)) from an AR(p) approximating model with p selected
using the Schwartz criterion. Data are from the Board of Gov-
ernors of the Federal Reserve System, based on Gürkaynak
et al. (2007). The sample period is January 1985 through
December 2008.

business cycle rhythm. The second factor is less variable,
less persistent, and less predictable than the level factor.
The third factor is the least variable, least persistent,
and least predictable.

In Figure 1.4 we plot the three principal components
(factors) against standard empirical yield curve level,
slope, and curvature measures (the 10-year yield, the
10Y-6M spread, and a 6M+10Y-2*5Y butterfly spread,
respectively). The figure reveals that the three bond yield
factors effectively are level, slope, and curvature. This is
important, because it implies that the different factors
likely have different and specific macroeconomic deter-
minants. Inflation, for example, is clearly related to the
yield curve level, and the stage of the business cycle is
relevant for the slope. It is also noteworthy that the yield
factors are effectively orthogonal due to their exception-
ally close links to the principal components, which are
orthogonal by construction.
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Figure 1.4. Empirical Level, Slope, and Curvature and
First Three Principal Components of Bond Yields. We show
the standardized empirical level, slope, and curvature with
dark lines, and the first three standardized principal compo-
nents (denoted PC1, PC2, and PC3) with lighter lines.
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1.5. Yield Curve Questions 13

The disproportionate amount of yield variation associ-
ated with the common level factor, together with its high
persistence, explains the broad sweep of earlier-discussed
facts, in particular the high persistence of yields and the
greatly reduced persistence of yield spreads (because the
common level factor vanishes from the spreads). Reality
is of course a bit more complicated, as slope and curva-
ture factors are also operative, but the effects of the level
factor dominate.

A factor structure for yields with a highly persistent
level factor is constrained by economic theory. Economic
theory strongly suggests that nominal bond yields should
not have unit roots, because the yields are bounded
below by zero, whereas unit-root processes have ran-
dom walk components and therefore will eventually cross
zero almost surely. Nevertheless, the unit root may be a
good approximation so long as yields are not too close
to zero, as noted by Dungey et al. (2000), Giese (2008),
and Jardet et al. (2010), among others.6 Work in that
tradition, most notably Dungey et al. (2000), finds not
only integration but also clear cointegration, and the
common unit roots associated with cointegration imply
factor structure.

1.5 Yield Curve Questions

Thus far we have laid the groundwork for subsequent
chapters, touching on aspects of yield definition, data
construction, and descriptive statistical properties of
yields and yield factors. We have emphasized the high

6Alternatively, more sophisticated models, such as the “square-
root process” of Cox et al. (1985), can allow for unit-root dynam-
ics while still enforcing yield nonnegativity by requiring that the
conditional variance of yields approach zero as yields approach zero.
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14 1. Facts, Factors, and Questions

persistence of yields, the lesser persistence of yield
spreads, and, related, the good empirical approximation
afforded by a low-dimensional three-factor structure
with highly persistent level and slope factors. Here we
roam more widely, in part looking backward, expand-
ing on themes already introduced, and in part looking
forward, foreshadowing additional themes that feature
prominently in what follows.

1.5.1 Why Use Factor Models for Yields?

The first problem faced in term structure modeling is
how to summarize the price information at any point
in time for the large number of nominal bonds that are
traded. Dynamic factor models prove appealing for three
key reasons.

First, as emphasized already, factor structure gener-
ally provides a highly accurate empirical description of
yield curve data. Because only a small number of system-
atic risks appear to underlie the pricing of the myriad
of tradable financial assets, nearly all bond price infor-
mation can be summarized with just a few constructed
variables or factors. Therefore, yield curve models almost
invariably employ a structure that consists of a small set
of factors and the associated factor loadings that relate
yields of different maturities to those factors.

Second, factor models prove tremendously appealing
for statistical reasons. They provide a valuable compres-
sion of information, effectively collapsing an intractable
high-dimensional modeling situation into a tractable
low-dimensional situation. This would be small conso-
lation if the yield data were not well-approximated with
factor structure, but again, they are. Hence we’re in a
most fortunate situation. We need low-dimensional fac-
tor structure for statistical tractability, and, mercifully,
the data actually have factor structure.
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1.5. Yield Curve Questions 15

Related, factor structure is consistent with the “par-
simony principle,” which we interpret here as the broad
insight that imposing restrictions implicitly associated
with simple models—even false restrictions that may
degrade in-sample fit—often helps to avoid data mining
and, related, to produce good out-of-sample forecasts.7
For example, an unrestricted vector autoregression pro-
vides a very general linear model of yields typically
with good in-sample fit, but the large number of esti-
mated coefficients may reduce its value for out-of-sample
forecasting.8

Last, and not at all least, financial economic theory
suggests, and routinely invokes, factor structure. We see
thousands of financial assets in the markets, but for a
variety of reasons we view the risk premiums that sepa-
rate their expected returns as driven by a much smaller
number of components, or risk factors. In the equity
sphere, for example, the celebrated capital asset pricing
model (CAPM) is a single-factor model. Various exten-
sions (e.g., Fama and French (1992)) invoke a few addi-
tional factors but remain intentionally very low-dimen-
sional, almost always with fewer than five factors. Yield
curve factor models are a natural bond market parallel.

1.5.2 How Should Bond Yield Factors and
Factor Loadings Be Constructed?

The literature contains a variety of methods for con-
structing bond yield factors and factor loadings. One

7See Diebold (2007) for additional discussion.
8Parsimony, however, is not the only consideration for deter-

mining the number of factors needed; the demands of the precise
application are of course also relevant. For example, although just
a few factors may account for almost all dynamic yield variation
and optimize forecast accuracy, more factors may be needed to fit
with great accuracy the cross section of yields at a point in time,
say, for pricing derivatives.
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16 1. Facts, Factors, and Questions

approach places structure only on the estimated factors,
leaving loadings free. For example, the factors could be
the first few principal components, which are restricted
to be mutually orthogonal, while the loadings are left
unrestricted. Alternatively, the factors could be observed
bond portfolios, such as a long-short for slope or a
butterfly for curvature.

A second approach, conversely, places structure only
on the loadings, leaving factors free. The classic example,
which has long been popular among market and central
bank practitioners, is the so-called Nelson-Siegel curve,
introduced in Nelson and Siegel (1987). As shown by
Diebold and Li (2006), a suitably dynamized version of
Nelson-Siegel is effectively a dynamic three-factor model
of level, slope, and curvature. However, the Nelson-Siegel
factors are unobserved, or latent, whereas the associ-
ated loadings are restricted by a functional form that
imposes smoothness of loadings across maturities, posi-
tivity of implied forward rates, and a discount curve that
approaches zero with maturity.

A third approach, the no-arbitrage dynamic latent
factor model, which is the model of choice in finance,
restricts both factors and factor loadings. The most com-
mon subclass of such models, affine models in the tradi-
tion of Duffie and Kan (1996), postulates linear or affine
dynamics for the latent factors and derives the associ-
ated restrictions on factor loadings that ensure absence
of arbitrage.

1.5.3 Is Imposition of “No-Arbitrage” Useful?

The assumption of no-arbitrage ensures that, after ac-
counting for risk, the dynamic evolution of yields over
time is consistent with the cross-sectional shape of the

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 



1.5. Yield Curve Questions 17

yield curve at any point in time. This consistency condi-
tion is likely to hold, given the existence of deep and well-
organized bond markets. Hence one might argue that the
real markets are at least approximately arbitrage-free, so
that a good yield curve model must display freedom from
arbitrage.

But all models are false, and subtleties arise once the
inevitability of model misspecification is acknowledged.
Freedom from arbitrage is essentially an internal consis-
tency condition. But a misspecified model may be inter-
nally consistent (free from arbitrage) yet have little rela-
tionship to the real world, and hence forecast poorly,
for example. Moreover, imposition of no-arbitrage on
a misspecified model may actually degrade empirical
performance.

Conversely, a model may admit arbitrage yet provide a
good approximation to a much more complicated reality,
and hence forecast well. Moreover, if reality is arbitrage-
free, and if a model provides a very good description of
reality, then imposition of no-arbitrage would presum-
ably have little effect. That is, an accurate model would
be at least approximately arbitrage-free, even if freedom
from arbitrage were not explicitly imposed.

Simultaneously, a large literature suggests that coax-
ing or “shrinking” forecasts in various directions (e.g.,
reflecting prior views) may improve performance, effec-
tively by producing large reductions in error variance
at the cost of only small increases in bias. An obvious
benchmark shrinkage direction is toward absence of arbi-
trage. The key point, however, is that shrinkage methods
don’t force absence of arbitrage; rather, they coax things
toward absence of arbitrage.

If we are generally interested in the questions posed in
this subsection’s title, we are also specifically interested
in answering them in the dynamic Nelson-Siegel context.
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18 1. Facts, Factors, and Questions

A first question is whether our dynamic Nelson-Siegel
(DNS) model can be made free from arbitrage. A second
question, assuming that DNS can be made arbitrage-free,
is whether the associated restrictions on the physical
yield dynamics improve forecasting performance.

1.5.4 How Should Term Premiums
Be Specified?

With risk-neutral investors, yields are equal to the
average value of expected future short rates (up to
Jensen’s inequality terms), and there are no expected
excess returns on bonds. In this setting, the expecta-
tions hypothesis, which is still a mainstay of much casual
and formal macroeconomic analysis, is valid. However,
it seems likely that bonds, which provide an uncertain
return, are owned by the same risk-averse investors who
also demand a large equity premium as compensation
for holding risky stocks. Furthermore, as suggested by
many statistical tests in the literature, the risk premi-
ums on nominal bonds appear to vary over time, which
suggests time-varying risk, time-varying risk aversion, or
both (e.g., Campbell and Shiller (1991), Cochrane and
Piazzesi (2005)).9

In the finance literature, the two basic approaches to
modeling time-varying term premiums are time-varying
quantities of risk and time-varying “prices of risk” (which
translate a unit of factor volatility into a term premium).
The large literature on stochastic volatility takes the for-
mer approach, allowing the variability of yield factors
to change over time. In contrast, the canonical Gaus-
sian affine no-arbitrage finance representation (e.g., Ang

9However, Diebold et al. (2006b) suggest that the importance
of the statistical deviations from the expectations hypothesis may
depend on the application.
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1.5. Yield Curve Questions 19

and Piazzesi (2003)) takes the latter approach, specifying
time-varying prices of risk.10

1.5.5 How Are Yield Factors and
Macroeconomic Variables Related?

The modeling of interest rates has long been a prime
example of the disconnect between the macro and finance
literatures. In the canonical finance model, the short-
term interest rate is a linear function of a few unob-
served factors. Movements in long-term yields are impor-
tantly determined by changes in risk premiums, which
also depend on those latent factors. In contrast, in the
macro literature, the short-term interest rate is set by
the central bank according to its macroeconomic sta-
bilization goals—such as reducing deviations of inflation
and output from the central bank’s targets. Furthermore,
the macro literature commonly views long-term yields
as largely determined by expectations of future short-
term interest rates, which in turn depend on expecta-
tions of the macro variables; that is, possible changes in
risk premiums are often ignored, and the expectations
hypothesis of the term structure is employed.

Surprisingly, the disparate finance and macro modeling
strategies have long been maintained, largely in isolation
of each other. Of course, differences between the finance
and macro perspectives reflect, in part, different ques-
tions, methods, and avenues of exploration. However, the
lack of interchange or overlap between the two research

10Some recent literature takes an intermediate approach. In a
structural dynamic stochastic general equilibrium (DSGE) model,
Rudebusch and Swanson (2012) show that technology-type shocks
can endogenously generate time-varying prices of risk—namely,
conditional heteroskedasticity in the stochastic discount factor—
without relying on conditional heteroskedasticity in the driving
shocks.
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20 1. Facts, Factors, and Questions

literatures that occurred in the past is striking. Notably,
both the DNS and affine no-arbitrage dynamic latent
factor models provide useful statistical descriptions of
the yield curve, but in their original, most basic, forms
they offer little insight into the nature of the underlying
economic forces that drive its movements.

Hence, to illuminate the fundamental determinants
of interest rates, researchers have begun to incorpo-
rate macroeconomic variables into the DNS and affine
no-arbitrage dynamic latent factor yield curve models.
For example, Diebold et al. (2006b) provide a macro-
economic interpretation of the DNS representation by
combining it with vector-autoregressive dynamics for
the macroeconomy. Their maximum-likelihood estima-
tion approach extracts 3 latent factors (essentially level,
slope, and curvature) from a set of 17 yields on U.S. Trea-
sury securities and simultaneously relates these factors to
3 observable macroeconomic variables (specifically, real
activity, inflation, and a monetary policy instrument).
By examining the correlations between the DNS yield
factors and macroeconomic variables, they find that the
level factor is highly correlated with inflation and the
slope factor is highly correlated with real activity. The
curvature factor appears unrelated to any of the main
macroeconomic variables.

The role of macroeconomic variables in a no-arbitrage
affine model is explored in several papers. In Ang and
Piazzesi (2003), the macroeconomic factors are measures
of inflation and real activity, and the joint dynamics
of macro factors and additional latent factors are cap-
tured by vector autoregressions.11 They find that output

11To avoid relying on specific macro series, Ang and Piazzesi
construct their measures of real activity and inflation as the first
principal component of a large set of candidate macroeconomic
series.
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shocks have a significant impact on intermediate yields
and curvature, while inflation surprises have large effects
on the level of the entire yield curve.

For estimation tractability, Ang and Piazzesi allow
only for unidirectional dynamics in their arbitrage-free
model; specifically, macro variables help determine yields
but not the reverse. In contrast, Diebold et al. (2006b)
consider a bidirectional characterization of dynamic
macro–yield interactions. They find that the causality
from the macroeconomy to yields is indeed significantly
stronger than in the reverse direction, but that inter-
actions in both directions can be important. Ang et al.
(2007) also allow for bidirectional macro-finance links
but impose the no-arbitrage restriction as well, which
poses a severe estimation challenge. They find that the
amount of yield variation that can be attributed to
macro factors depends on whether the system allows for
bidirectional linkages. When the interactions are con-
strained to be unidirectional (from macro to yield fac-
tors), macro factors can explain only a small portion of
the variance of long yields. In contrast, when interactions
are allowed to be bidirectional, the system attributes
over half of the variance of long yields to macro factors.
Similar results in a more robust setting are reported in
Bibkov and Chernov (2010).

Finally, Rudebusch and Wu (2008) provide an exam-
ple of a macro-finance specification that employs more
macroeconomic structure and includes both rational
expectations and inertial elements. They obtain a good
fit to the data with a model that combines an affine no-
arbitrage dynamic specification for yields and a small
fairly standard macro model, which consists of a mone-
tary policy reaction function, an output Euler equation,
and an inflation equation. In their model, the level factor
reflects market participants’ views about the underlying
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or medium-term inflation target of the central bank, and
the slope factor captures the cyclical response of the cen-
tral bank, which manipulates the short rate to fulfill its
dual mandate to stabilize the real economy and keep
inflation close to target. In addition, shocks to the level
factor feed back to the real economy through an ex-ante
real interest rate.

1.6 Onward

In the chapters that follow, we address the issues and
questions raised here, and many others. We introduce
DNS in chapter 2, we make it arbitrage-free in chapter 3,
and we explore a variety of variations and extensions in
chapter 4. In chapter 5 we provide in-depth treatment
of aspects of the interplay between the yield curve and
the macroeconomy. In chapter 6 we highlight aspects of
the current frontier, attempting to separate wheat from
chaff, pointing the way toward additional progress.
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