This textbook offers the first unified treatment of wave propagation in electronic and electromagnetic systems and introduces readers to the essentials of the transfer matrix method, a powerful analytical tool that can be used to model and study an array of problems pertaining to wave propagation in electrons and photons. It is aimed at graduate and advanced undergraduate students in physics, materials science, electrical and computer engineering, and mathematics, and is ideal for researchers in photonic crystals, negative index materials, left-handed materials, plasmonics, nonlinear effects, and optics.
Peter Markos and Costas Soukoulis begin by establishing the analogy between wave propagation in electronic systems and electromagnetic media and then show how the transfer matrix can be easily applied to any type of wave propagation, such as electromagnetic, acoustic, and elastic waves. The transfer matrix approach of the tight-binding model allows readers to understand its implementation quickly and all the concepts of solid-state physics are clearly introduced. Markos and Soukoulis then build the discussion of such topics as random systems and localized and delocalized modes around the transfer matrix, bringing remarkable clarity to the subject. Total internal reflection, Brewster angles, evanescent waves, surface waves, and resonant tunneling in left-handed materials are introduced and treated in detail, as are important new developments like photonic crystals, negative index materials, and surface plasmons. Problem sets aid students working through the subject for the first time.
Peter Markos is a researcher at the Institute of Physics at the Slovak Academy of Sciences. Costas M. Soukoulis is Distinguished Professor of Physics at Iowa State University and senior physicist at Ames Laboratory. His books include Photonic Band Gap Materials and Photonic Crystals and Light Localization in the Twenty-First Century.
"In this excellent volume, physicists Markoš and Soukoulis treat a wide range of physical phenomenon with a single unifying mathematical matrix method."—M. Coplan, Choice
"The book can be recommended to everyone who is going to enter the field of wave propagation."—Aleksander Pankov, Zentralblatt MATH
"This book is conceptually well-organized and concisely focused in its applications. It also has numerous illustrative problems to give the reader experience with using the techniques. It will undoubtedly emerge as a standard upper-divison undergraduate/graduate text for the teaching of the subject."—David H. Delphenich, Mathematical Reviews
"I strongly recommend this volume for undergraduate students, graduate students, and researchers alike. It is very carefully prepared and offers insights into numerous aspects of wave propagation, from standard problems of quantum theory to topics of today's research. In particular, the graphical supplements allow for an easy comprehension of the theoretical considerations. For students, the book is a profitable amendment to standard treatises on quantum theory, electrodynamics, and solid state physics. Researchers will enjoy the succinct presentation of a variety of topics from a unified point of view, and, last but not least, professors will be able to extract new ideas (and some exercises) for their lectures from this remarkable volume."—Ulrich Eckern, Annalen der Physik
"This book provides a valuable introduction to wave propagation, taking as its central theme the transfer matrix approach which has proved to be flexible in its application to a variety of problems, ranging from the electronic band structure of solids to studies of photonic crystals. This work is timely because of the need to document new advances in this active area of research. The authors are among the leaders in the field and it is gratifying to see their combined experience distilled for the benefit of a new generation of students."—J. B. Pendry, Imperial College London
"We live in an age transformed by the technologies of the electron and the photon. This book, written by two world experts, presents in a clear and unified fashion the physics underlying these dual revolutions. It is highly recommended for students from senior undergraduate level on up to experts in wave science."—Ross McPhedran, University of Sydney
"A completely unique and unified treatment of wave propagation in electronic and electromagnetic systems. For a first-year graduate student studying either electromagnetics or solid-state physics, this will be a very educational and important reference. The book is extremely friendly for students working through the subject for the first time."—David R. Smith, Duke University
"To my knowledge, this is the first time an attempt has been made to bring together the application of the transfer matrix method in the variety of applications pertaining to wave propagation both in electrons and photons. It is suitable as a textbook or reference for graduate students as well as any researcher working in the field of wave propagation. The authors have done a commendable job."—Vinod Menon, Queens College, City University of New York